Advertisement

Effect of multiple elastic scattering on X-ray photoelectron spectroscopy signals over a wide range of energy loss

  • V. P. Afanas’evEmail author
  • P. S. Kaplya
  • A. V. Lubenchenko
  • D. A. Ivanov
Proceedings of the 21st International Conference “Ion-Surface Interaction (ISI-2013)”

Abstract

Spectra from X-ray photoelectron spectroscopy (XPS) measured over a wide range of energy loss are analyzed. The analytic description of XPS spectra over a wide range of energy loss is based on a precise solution to the problem of elastic scattering of photoelectrons in solids. A precise numerical solution is obtained by means of discrete ordinates method. The XPS spectrum is represented as a series by quantity of inelastic scattering. The inconsistency of ignoring multiple elastic processes by using straight line approximations (SLAs) in describing XPS energy spectra is demonstrated.

Keywords

Elastic Scattering Inelastic Scattering Reflection Function Discrete Ordinate Elastic Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Powell, C.J. and Jablonsky, A., J. Electron. Spectrosc. Relat. Phenom., 2010, vols. 178–179, p. 331.CrossRefGoogle Scholar
  2. 2.
    Tougaard, S., J. Electron. Spectrosc. Relat. Phenom., 2010, vols. 178–179, p. 128.CrossRefGoogle Scholar
  3. 3.
    Tilinin, I.S. and Werner, W.S.M., Phys. Rev. B, 1992, vol. 46, p. 13739.ADSCrossRefGoogle Scholar
  4. 4.
    Afanas’ev, V.P., Efremenko, D.S., Ivanov, D.A., et al., J. Surf. Investig. X-Ray, Synchrotron Neutron Tech., 2012, vol. 7, no. 2, p. 382.CrossRefGoogle Scholar
  5. 5.
    Afanas’ev, V.P., Efremenko, D.S., and Lubenchenko, A.V., On the application of the invariant imbedding method and the radiative transfer equation codes for the surface state analysis, in Light Scattering Reviews, Berlin, Heidelberg: Springer-Verlag, pp. 363–423.Google Scholar
  6. 6.
    Afanas’ev, V.P., Fedorovich, S.D., Lubenchenko, A.V., et al., Z. Phys. B, 1994, vol. 96, p. 253.ADSCrossRefGoogle Scholar
  7. 7.
    Hajati, S. and Tougaard, S., J. Surf. Anal., 2009, vol. 15, p. 220.Google Scholar
  8. 8.
    Tougaard, S., J. Electron Spectrosc. Relat. Phenom., 1990, vol. 52, p. 243.CrossRefGoogle Scholar
  9. 9.
    Jablonski, A., Salvat, F., and Powell, C.J., NIST Electron Elastic Scattering Cross Section Database, Ver. 3.1, 2003. http://www.nist.gov/srd/nist64.htm Google Scholar
  10. 10.
    NIST XPS Database. http://www.nist.gov/srdata/xps
  11. 11.
  12. 12.
    Ambartsumyan, V.A., Izv. Akad. Nauk SSSR. Ser. Geogr. Geofiz., 1942, vol. 97, p. 3.Google Scholar
  13. 13.
    Chandrasekhar, S., Radiative Transfer, Oxford: Oxford Univ. Press, 1950.zbMATHGoogle Scholar
  14. 14.
    Sobolev, V.V., Rasseyanie sveta v atmosferakh planet (Light Scattering in Planets Atmosphere), Moscow: Nauka, 1972, p. 336.Google Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  • V. P. Afanas’ev
    • 1
    Email author
  • P. S. Kaplya
    • 1
  • A. V. Lubenchenko
    • 1
  • D. A. Ivanov
    • 1
  1. 1.Moscow Power Engineering InstituteMoscowRussia

Personalised recommendations