Skip to main content
Log in

Current state, problems, and prospects of thermonuclear facilities based on the magneto-inertial confinement of hot plasma

  • Proceedings of the LXIII International Conference “Nuclei 2013: Fundamental Problems of Nuclear Physics and Atomic Power Engineering” (LXIII International Conference on Nuclear Spectroscopy and the Structure of Atomic Nuclei)
  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Magneto-inertial fusion (MIF) is an original technique of inertial thermonuclear fusion, where spherical and cylindrical gas or plasma configurations are compressed under the action of an external magnetic field. We present a brief review of recent data on laser- and plasma jet-driven MIF systems and possible ways they can be applied. This work also presents problems of and prospects for the application of such approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lindemuth, I.R. and Kirkpatrick, R.C., Nucl. Fus., 1983, vol. 23, p. 263.

    Article  Google Scholar 

  2. Hasegawa, A., Daido, H., Fujita, M., et al., Phys. Rev. Lett., 1986, vol. 56, p. 139.

    Article  ADS  Google Scholar 

  3. Garanin, S.F., Mamyshev, V.I., and Yakubov, V.B., IEEE Trans. Plasma Sci., 2006, vol. 26, p. 2273.

    Article  ADS  Google Scholar 

  4. Thio, Y.C.F., et al., Proc. 2nd Symp. on Current Trends in Int. Fusion Research, Ottawa, 1999, p. 113.

    Google Scholar 

  5. Lindemuth, I.R. and Siemon, R.E., Am. J. Phys., 2009, vol. 77, p. 407.

    Article  ADS  Google Scholar 

  6. Ryzhkov, S.V., Probl. At. Sci. Technol., 2010, no. 4, p. 105.

    Google Scholar 

  7. Voronchev, V.T. and Kukulin, V.I., Phys. Atom. Nucl., 2010, vol. 73, p. 38.

    Article  ADS  Google Scholar 

  8. Voronchev, V.T. and Kukulin, V.I., Phys. Atom. Nucl., 2010, vol. 73, p. 1376.

    Article  ADS  Google Scholar 

  9. Awe, T.J., Adams, C.S., Davis, J.S., et al., Phys. Plasmas, 2011, vol. 18, p. 072705.

    Article  ADS  Google Scholar 

  10. Feoktistov, L.P., Budushchee nauki (Future of Science), Moscow: Znanie, 1985.

    Google Scholar 

  11. Shcherbakov, V.A., Sov. J. Plasma Phys., 1983, vol. 9, p. 240.

    Google Scholar 

  12. Fortov, V.E., Usp. Fiz. Nauk, 2009, vol. 179, p. 653.

    Article  Google Scholar 

  13. Santarius, J.F., Phys. Plasmas, 2012, vol. 19, p. 072705.

    Article  ADS  Google Scholar 

  14. Garanin, S.F., Doctoral Sci. (Phys.-Math.) Sci., Sarov: Russian Federal Nuclear Center All-Russian Research Inst. of Experimental Physics, 2000.

    Google Scholar 

  15. Azizov, E.A., Alikhanov, S.G., Galanin, M.P., et al., Vopr. At. Nauki Tekhn., Ser. Termoyad. Sintez, 2001, no. 3, p. 3.

    Google Scholar 

  16. Aleksandrov, V.V., Grabovskii, E.V., Gritsuk, A.N., et al., Plasma Phys. Rep., 2010, vol. 36, p. 482.

    Article  ADS  Google Scholar 

  17. Chirkov, A.Yu. and Ryzhkov, S.V., J. Fus. Energy, 2012, vol. 31, no. 1, p. 7.

    Article  ADS  Google Scholar 

  18. Kostyukov, I.Yu. and Ryzhkov, S.V., Plasma Phys. Rep., 2011, vol. 37, p. 1092.

    Article  ADS  Google Scholar 

  19. Alikhanov, S.G. and Bakhtin, V.P., Dokl. Akad. Nauk SSSR, 1982, vol. 263, p. 332.

    Google Scholar 

  20. Turchi, P.J., Zh. Prikl. Mekh. Tekh. Fiz., 1975, vol. 4, p. 32.

    Google Scholar 

  21. Ivanovskii, A.V., Vopr. At. Nauki Tekhn. Termoyad. Sintez, 2004, no. 3, p. 37.

    Google Scholar 

  22. Azizov, E.A., Kareev, Yu.A., Konkashbaev, I.K., et al., Dokl. Akad. Nauk SSSR, 1979, vol. 248, p. 1090.

    ADS  Google Scholar 

  23. Kurtmullaev, R.Kh., Semenov, V.N., Khvesyuk, V.I., et al., Plazmennye uskoriteli i ionnye inzhektory (Plasma Accelerators and Ionic Injectors), Moscow: Nauka, 1984, p. 250.

    Google Scholar 

  24. Bogomolov, G.D., Velikovich, A.L., and Liberman, M.A., Sov. J. Tech. Phys. Lett., 1983, vol. 9, p. 322.

    Google Scholar 

  25. Artyugina, I.M., Zheltov, V.A., Komin, A.V., et al., Vopr. At. Nauki Tekhn, Ser. Termoyad. Sintez, 1979, no. 1, p. 62.

    Google Scholar 

  26. Velikhov, E.P., Vedenov, A.A., Bogdanets, A.D., et al., Sov. J. Tech. Phys., 1973, vol. 18, p. 274.

    Google Scholar 

  27. Turchi, P.J., et al., Phys. Rev. Lett., 1976, vol. 36, p. 1546.

    Article  ADS  Google Scholar 

  28. Smirnov, V.P., Zakharov, S.V., and Grabovski, E.V., JETP Lett., 2005, vol. 81, p. 442.

    Article  ADS  Google Scholar 

  29. Basko, M.M., Kemp, A.J., and Meyer-ter-Vehn, J., Nucl. Fus., 2000, vol. 40, p. 59.

    Article  ADS  Google Scholar 

  30. Miller, R.L., Fus. Sci. Technol., 2009, vol. 56, p. 940; Miller, R.L., Fus. Sci. Technol., 2007, vol. 52, p. 427.

    ADS  Google Scholar 

  31. Chang, P.Y., Fiksel, G., Hohenberger, M., et al., Phys. Rev. Lett., 2011, vol. 107, p. 035006.

    Article  ADS  Google Scholar 

  32. Rambo, P.K., Smith, I.C., Porter, J.L., Jr., et al., Appl. Opt., 2005, vol. 44, p. 2421.

    Article  ADS  Google Scholar 

  33. Intrator, T.P., Siemon, R.E., and Sieck, P.E., Phys. Plasmas, 2008, vol. 15, p. 042505.

    Article  ADS  Google Scholar 

  34. Horton, R.D., Hwang, D.Q., Howard, S., et al., Nucl. Fus., 2008, vol. 48, p. 095002.

    Article  ADS  Google Scholar 

  35. Eskov, A.G., Kozlov, N.P., Kurtmullaev, R.Kh., et al., Sov. J. Techn. Phys. Lett., 1983, vol. 9, p. 38.

    Google Scholar 

  36. Witherspoon, F.D., Case, A., Messer, S.J., et al., Rev. Sci. Instrum., 2009, vol. 80, p. 083506.

    Article  ADS  Google Scholar 

  37. Case, A., Messer, S., Brockington, S., et al., Phys. Plasmas, 2013, vol. 20, p. 012704.

    Article  ADS  Google Scholar 

  38. Slough, J., Votroubek, G., and Pihl, C., Nucl. Fus., 2011, vol. 51, p. 053008.

    Article  ADS  Google Scholar 

  39. Uzun-Kaymak, I.U., Messer, S., Bomgardner, R., et al., Plasma Phys. Controll. Fus., 2009, vol. 51, p. 095007.

    Article  ADS  Google Scholar 

  40. Intrator, T.P., Wurden, G.A., Sieck, P.E., et al., J. Fus. Energy, 2009, vol. 28, p. 165.

    Article  ADS  Google Scholar 

  41. Degnan, J.H., Amdahl, D.J., Domonkos, M., et al., Nucl. Fus., 2013, vol. 53, p. 093003.

    Article  ADS  Google Scholar 

  42. Cassibry, J.T., Stanic, M., Hsu, S.C., et al., Phys. Plasmas, 2012, vol. 19, p. 052702.

    Article  ADS  Google Scholar 

  43. Binderbauer, M.W., Guo, H.Y., Tuszewski, M., et al., Phys. Rev. Lett., 2010, vol. 105, p. 045003.

    Article  ADS  Google Scholar 

  44. Laberge, M., J. Fus. Energy, 2009, vol. 28, p. 179.

    Article  ADS  Google Scholar 

  45. Takeyama, S., Proc. 13th Int. Conf. on Megagauss Magnetic Field Generation, Suzhou, 2010, p. 59.

    Google Scholar 

  46. Gasilov, V.A., D’yachenko, S.V., Chuvatin, A.S. et al., Math. Mod. Comp. Simul., 2010, vol. 2, p. 375.

    Article  Google Scholar 

  47. Repin, B.G., Orlov, A.P., Repin, P.B., et al., IEEE Trans. Plasma Sci., 2010, vol. 38, p. 1822.

    Article  ADS  Google Scholar 

  48. Galanin, M.P., et al., Vestn. Mosk. Gos. Tekhn. Univ. im. N.E. Baumana, 2010, no. 2, p. 65.

    Google Scholar 

  49. Kuzenov, V.V. and Ryzhkov, S.V., Acta Techn., 2011, vol. 56, p. T454.

    Google Scholar 

  50. Kuzenov, V.V. and Ryzhkov, S.V., Probl. At. Sci. Technol., Ser.: Plasma Phys., 2013, vol. 83, no. 1, p. 12.

    Google Scholar 

  51. Kuzenov, V.V. and Ryzhkov, S.V., Probl. At. Sci. Technol., Ser.: Plasma Phys., 2013, vol. 86, no. 4, p. 103.

    Google Scholar 

  52. Gotchev, O.V., Jang, N.W., Knauer, J.P., et al., J. Fus. Energy, 2008, vol. 27, p. 25.

    Article  Google Scholar 

  53. Liberman, M.A. and Velikovich, A.L., J. Plasma Phys., 1984, vol. 31, p. 381.

    Article  ADS  Google Scholar 

  54. Felber, F.S., Liberman, M.A., and Velikovich, A.L., Appl. Phys. Lett., 1985, vol. 46, p. 1042.

    Article  ADS  Google Scholar 

  55. Felber, F.S., Malley, M.M., Wessel, F.J., et al., Phys. Fluids, 1988, vol. 31, p. 2053.

    Article  ADS  Google Scholar 

  56. Gotchev, O.V., Chang, P.Y., Knauer, J.P., et al., Phys. Rev. Lett., 2009, vol. 103, p. 215004.

    Article  ADS  Google Scholar 

  57. Perkins, L.J., Logan, B.G., Zimmerman, G.B., et al., Phys. Plasmas, 2013, vol. 18, p. 072705.

    Google Scholar 

  58. Knauer, J.P., Gotchev, O.V., Chang, P.Y., et al., Phys. Plasmas, 2010, vol. 17, p. 056318.

    Article  ADS  Google Scholar 

  59. Ryzhkov, S.V., Fus. Sci. Technol., 2009, vol. 55, no. 2T, p. 157.

    Google Scholar 

  60. Ivanovskii, A.V., Vopr. At. Nauki Tekhn, Ser. Termoyad. Sintez, 2004, no. 3, p. 37.

    Google Scholar 

  61. Aleksandrov, V.V., Volkov, G.S., Grabovski, E.V. et al., Plasma Phys. Rep., 2012, vol. 38, p. 315.

    Article  ADS  Google Scholar 

  62. Ryzhkov, S.V., Fus. Sci. Technol., 2005, vol. 47, no. 1T, p. 342.

    MathSciNet  Google Scholar 

  63. Rahman, H.U., et al., Phys. Plasmas, 2012, vol. 19, p. 122701.

    Article  ADS  Google Scholar 

  64. Cassibry, J.T., Stanic, M., and Hsu, S.C., Phys. Plasmas, 2013, vol. 20, p. 032706.

    Article  ADS  Google Scholar 

  65. Hsu, S.C., Merritt, E.C., Moser, A.L., et al., Phys. Plasmas, 2012, vol. 19, p. 123514.

    Article  ADS  Google Scholar 

  66. Slutz, S.A. and Vesey, R.A., Phys. Rev. Lett., 2012, vol. 109, p. 025003.

    Article  ADS  Google Scholar 

  67. Ryzhkov, S.V., Plasma Phys. Rep., 2011, vol. 37, p. 1075.

    Article  ADS  Google Scholar 

  68. Steinhauer, L.C., Phys. Plasmas, 2011, vol. 18, p. 070501.

    Article  ADS  Google Scholar 

  69. Matsuda, Y.H., Herlach, F., Ikeda, S., et al., Rev. Sci. Instrum., 2002, vol. 73, p. 4288.

    Article  ADS  Google Scholar 

  70. Votroubek, G. and Slough, J., J. Fus. Energy, 2010, vol. 29, p. 571.

    Article  ADS  Google Scholar 

  71. McBride, R.D., et al., Phys. Rev. Lett., 2012, vol. 109, p. 135004.

    Article  ADS  Google Scholar 

  72. Ryzhkov, S.V., Chirkov, A.Yu., and Ivanov, A.A., Fus. Sci. Technol., 2013, vol. 63, no. 1T, p. 135.

    Google Scholar 

  73. Samulyak, R., Parks, P., and Wu, L., Phys. Plasmas, 2010, vol. 17, p. 092702.

    Article  ADS  Google Scholar 

  74. Dmitriev, V.F., Phys. Atom. Nucl., 2006, vol. 69, p. 1461.

    Article  ADS  Google Scholar 

  75. Ryzhkov, S.V., Probl. Atom. Sci. Tech. Ser.: Plasma Phys., 2008, no. 6, p. 61.

    Google Scholar 

  76. Cuneo, M.E., et al., IEEE Trans. Plasma Sci., 2012, vol. 40, p. 3222.

    Article  ADS  Google Scholar 

  77. McBride, R.D., et al., Phys. Plasmas, 2013, vol. 20, p. 056309.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Ryzhkov.

Additional information

Original Russian Text © S.V. Ryzhkov, 2014, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2014, Vol. 78, No. 5, pp. 647–653.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryzhkov, S.V. Current state, problems, and prospects of thermonuclear facilities based on the magneto-inertial confinement of hot plasma. Bull. Russ. Acad. Sci. Phys. 78, 456–461 (2014). https://doi.org/10.3103/S1062873814050281

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873814050281

Keywords

Navigation