Skip to main content
Log in

Manifestation of tunneling TLS dynamics of a polymer matrix in single-molecule fluorescence blinking

  • Proceedings of the X International Symposium on Photon Echoes and Coherent Spectroscopy
  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Blinking (stochastic intermittence) of fluorescence is a quite common phenomenon that accompanies the emission of single quantum objects-organic chromophore molecules, quantum dots, and nanocrystals. It is demonstrated that fluorescence blinking of single organic molecules embedded into a polymer matrix including the occurrence of “grey” states is due to tunneling transitions in the two-level systems (TLSs) of the matrix. The repeated registration of fluorescence excitation spectra of single molecules (SMs) is used for our analysis. The statistics of fluorescence blinking of an SM is directly related to conformational changes (tunneling transitions in TLSs) in its immediate vicinity. Individual parameters of the corresponding elementary excitation are also determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Riley, E.A., Hess, C.M., and Reid, P.J., Int. J. Molec. Sci., 2012, vol. 13, p. 12487.

    Article  Google Scholar 

  2. Rust, M.J., Bates, M., and Zhuang, X.W., Nature Methods, 2006, vol. 3, p. 793.

    Article  Google Scholar 

  3. Lounis, B. and Moerner, W.E., Nature, 2000, vol. 407, no. 6803, p. 491.

    Article  ADS  Google Scholar 

  4. Kako, S., Santori, C., Hoshino, K., et al., Nature Mater., 2006, vol. 5, p. 887.

    Article  ADS  Google Scholar 

  5. Orrit, M. and Moerner, W.E., High Resolution Single-Molecule Spectroscopy in Condensed Matter, Physics and Chemistry at Low Temperatures, Singapore: Pan Stanford Publ., 2011, p. 381.

    Google Scholar 

  6. Naumov, A.V., Usp. Fiz. Nauk, 2013, vol. 183, p. 633.

    Article  Google Scholar 

  7. Barnes, M.D., Mehta, A., Thundat, T., Bhargava, R.N., Chhabra, V., and Kulkarni, B., J. Phys. Chem. B, 2000, vol. 104, p. 6099.

    Article  Google Scholar 

  8. Kuno, M., Fromm, D.P., Hamann, H.F., Gallagher, A., and Nesbitt, D.J., J. Chem. Phys., 2000, vol. 112, p. 3117.

    Article  ADS  Google Scholar 

  9. Shimizu, K.T., Neuhauser, R.G., Leatherdale, C.A., et al., Phys. Rev. B, 2001 vol. 6320, p. 205316.

    Article  ADS  Google Scholar 

  10. Ambrozevich, S., Van der Auweraer, M., Dirin, D., et al., J. Russ. Laser Res., 2008, vol. 29, p. 526.

    Article  Google Scholar 

  11. Ren, T., Erker, W., Basche, T., and Schartl, W., Langmuir, 2010, vol. 26, p. 17981.

    Article  Google Scholar 

  12. Bruhn, B., Valenta, J., Sangghaleh, F., and Linnros, J., Nano Lett., 2011, vol. 11, p. 5574.

    Article  ADS  Google Scholar 

  13. Bradac, C., Gaebel, T., Naidoo, N., et al., Nature Nanotechnol., 2010, vol. 5, p. 345.

    Article  ADS  Google Scholar 

  14. Kuhn, S., Hettich, C., Schmitt, C., Poizat, J.P.H., and Sandoghdar, V., J. Microscopy-Oxford, 2001, vol. 202, p. 2.

    Article  MathSciNet  Google Scholar 

  15. Wrachtrup, J., Nature Nanotechnol., 2010, vol. 5, p. 314.

    Article  ADS  Google Scholar 

  16. Dickson, R.M., Cubitt, A.B., Tsien, R.Y., and Moerner, W.E., Nature, 1997, vol. 388, no. 6640, p. 355.

    Article  ADS  Google Scholar 

  17. Weber, W., Helms, V., McCammon, J.A., and Langhoff, P.W., Proc. Nat. Acad. Sci. USA, 1999, vol. 96, p. 6177.

    Article  ADS  Google Scholar 

  18. Feist, F.A. and Basche, T., Angewandte Chem.-Int. Ed., 2011, vol. 50, p. 5256.

    Article  Google Scholar 

  19. Yip, W.T., Hu, D.H., Yu, J., et al., J. Phys. Chem. A, 1998, vol. 102, p. 7564.

    Article  Google Scholar 

  20. Ernst, D., Hildner, R., Hippius, C., et al., Chem. Phys. Lett., 2009, vol. 482, p. 93.

    Article  ADS  Google Scholar 

  21. Haase, M., Hubner, C.G., Nolde, F., et al., Phys. Chem. Chem. Phys., 2011, vol. 13, p. 1776.

    Article  Google Scholar 

  22. Liu, R.C., Holman, M.W., Zang, L., and Adams, D.M., J. Phys. Chem. A, 2003, vol. 107, p. 6522.

    Article  Google Scholar 

  23. Osad’ko, I.S. and Shchukina, A.L., Bull. Russ. Acad. Sci.: Physics, 2012, vol. 76, no. 3, p. 237.

    Article  Google Scholar 

  24. Knoester, J., Adv. Mater., 1995, vol. 7, p. 500.

    Article  Google Scholar 

  25. Orlov, S.V., Naumov, A.V., Vainer, Y.G., and Kador, L., J. Chem. Phys., 2012, vol. 137, p. 194903.

    Article  ADS  Google Scholar 

  26. Barkai, E., Naumov, A.V., Vainer, Y.G., et al., Phys. Rev. Lett., 2003, vol. 91, p. 075502.

    Article  ADS  Google Scholar 

  27. Vainer, Y.G., Naumov, A.V., Bauer, M., and Kador, L., Phys. Rev. Lett., 2006, vol. 97, p. 185501.

    Article  ADS  Google Scholar 

  28. Naumov, A.V. and Vainer, Yu.G., Bull. Russ. Acad. Sci. Phys., 2006, vol. 70, no. 4, p. 532.

    Google Scholar 

  29. Naumov, A.V., Vainer, Y.G., and Kador, L., Phys. Rev. Lett., 2007, vol. 98, p. 145501.

    Article  ADS  Google Scholar 

  30. Eremchev, I.Y., Vainer, Y.G., Naumov, A.V., and Kador, L., Phys. Chem. Chem. Phys., 2011, vol. 13, p. 1843.

    Article  Google Scholar 

  31. Vainer, Yu.G., Naumov, A.V., Bauer, M., and Kador, L., Opt. Spektrosk., 2003, vol. 94, p. 926.

    Google Scholar 

  32. Ambrose, W.P., Basche, T., and Moerner, W.E., J. Chem. Phys., 1991, vol. 95, p. 7150.

    Article  ADS  Google Scholar 

  33. Boiron, A.M., Tamarat, P., Lounis, B., et al., Chem. Phys., 1999, vol. 247, p. 119.

    Article  ADS  Google Scholar 

  34. Ambrose, W.P. and Moerner, W.E., Nature, 1991, vol. 349, no. 6306, p. 225.

    Article  ADS  Google Scholar 

  35. Geva, E. and Skinner, J.L., J. Phys. Chem. B, 1997, vol. 101, no. 44, p. 8920.

    Article  Google Scholar 

  36. Spinicelli, P., Buil, S., Quelin, X., et al., Phys. Rev. Lett., 2009, vol. 102, no. 13, p. 136801.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Naumov.

Additional information

Original Russian Text © S.V. Orlov, A.V. Naumov, 2014, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2014, Vol. 78, No. 3, pp. 280–284.

About this article

Cite this article

Orlov, S.V., Naumov, A.V. Manifestation of tunneling TLS dynamics of a polymer matrix in single-molecule fluorescence blinking. Bull. Russ. Acad. Sci. Phys. 78, 184–188 (2014). https://doi.org/10.3103/S1062873814030150

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873814030150

Keywords

Navigation