Skip to main content
Log in

Characteristics of the GAMMA-400 gamma-ray telescope for searching for dark matter signatures

  • Proceedings of the 32nd All-Russia Conference on Cosmic Rays (Moscow, July 2012)
  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope


The GAMMA-400 gamma-ray telescope currently under development is designed to measure fluxes of gamma rays and electron-positron cosmic-ray components, which could be associated with the annihilation or decay of dark matter particles, and to survey in detail the celestial sphere in order to search for and investigate discrete gamma-ray sources; to measure the energy spectra of Galactic and extragalactic dif- fuse gamma-ray emissions; and to study gamma-ray bursts and the gamma-ray emissions of active Sun. The GAMMA-400 energy range is 100 MeV to 3000 GeV. The gamma-ray telescope has an angular resolution of ∼0.01°, an energy resolution of ∼1%, and a proton rejection factor of ∼106. The GAMMA-400 will be installed on Russia’s Navigator space platform. Observations are planned to commence in 2018.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Ginzburg, V.L., Phys. Usp., 2004, vol. 47, no. 11, p. 1155.

    Article  ADS  Google Scholar 

  2. Bringmann, T., et al., J. Cosm. Astrop. Phys., 2012, vol. 1207, p. 054.

    Article  ADS  Google Scholar 

  3. Bergström, L., et al., arXiv:1207.6773.

  4. Hooper, D. and Linden, T., arXiv:1208.0828.

  5. Bringmann, T. and Weniger, C., Dark Universe, 2012, vol. 1, pp. 194–217.

    Article  Google Scholar 

  6. Bergström, L., Phys. Rev. D, 2012, vol. 86, p. 103514.

    Article  ADS  Google Scholar 

  7. Hooper, D., et al., arXiv:1209.3015.

  8. Galper, A., et al., Astrophys. Space Sci. Trans., 2011, vol. 7, p. 75.

    Article  ADS  Google Scholar 

  9. Galper, A., et al., Adv. Space Res., 2013, vol. 51, p. 297.

    Article  ADS  Google Scholar 

  10. Atwood, W.B., et al., Astrophys. J., 2009, vol. 697, p. 1071.

    Article  ADS  Google Scholar 

  11. Moiseev, A., et al., Astropart. Phys., 2007, vol. 27, p. 339.

    Article  ADS  Google Scholar 

  12. Tavani, M., et al., Astron. Astrophys., 2009, vol. 502, pp. 995–1013.

    Article  ADS  Google Scholar 

  13. Jacholkowska, A., et al., Phys. Rev. D: Part. Fields, 2006, vol. 74, p. 023518.

    Article  ADS  Google Scholar 

  14. Magic Collab., Aleksic, J., et al., Astropart. Phys., 2012, vol. 35, p. 435.

    Article  ADS  Google Scholar 

  15. Stegmann, C., et al., AIP Conf. Proc., 2012, vol. 1505, p. 194.

    Article  ADS  Google Scholar 

  16. CTA Consortium, Experim. Astron., 2011, vol. 32, pp. 193–316.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. M. Galper.

Additional information

Original Russian Text © A.M. Galper, O. Adriani, R.L. Aptekar, I.V. Arkhangelskaja, A.I. Arkhangelskiy, M. Boezio, V. Bonvicini, K.A. Boyarchuk, A. Vacchi, E. Vannuccini, Yu.V. Gusakov, N. Zampa, V.G. Zverev, V.N. Zirakashvili, V.A. Kaplin, V.A. Kachanov, A.A. Leonov, F. Longo, E.P. Mazets, P. Maestro, P. Marrocchesi, I.A. Mereminskiy, V.V. Mikhailov, A.A. Moiseev, E. Mocchiutti, N. Mori, I.V. Moskalenko, P.Yu. Naumov, P. Papini, P. Picozza, V.G. Rodin, M.F. Runtso, R. Sparvoli, P. Spillantini, S.I. Suchkov, M. Tavani, N.P. Topchiev, M.I. Fradkin, M.D. Kheymits, Y.T. Yurkin, 2013, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2013, Vol. 77, No. 11, pp. 1605–1608.

About this article

Cite this article

Galper, A.M., Adriani, O., Aptekar, R.L. et al. Characteristics of the GAMMA-400 gamma-ray telescope for searching for dark matter signatures. Bull. Russ. Acad. Sci. Phys. 77, 1339–1342 (2013).

Download citation

  • Published:

  • Issue Date:

  • DOI: