Mathematical modelling radiation impact on nanostructures

Proceedings of the International Conference “Nucleus-2012”. “Fundamental Problems of Nuclear Physics, Atomic Power Engineering and Nuclear Technologies” (The 62nd International Conference on Nuclear Spectroscopy and the Structure of Atomic Nuclei)

Abstract

The main methods for simulating the impact of radiation on nanostructures are considered. The quantum mechanical density functional method and the semi-empirical density functional tight-binding method are chosen on the basis of an analysis of their applicability to studying the formation of radiation defects in nanostructures in different ranges of space-time. The results from simulating vacancy formation in carbon and boron nitride nanostructures under the impact of H and O atoms with energies of 1–200 eV are presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Novye naukoemkie tekhnologii v tekhnike. Entsiklopediya (New Science Intensive Technologies in Engineering. Encyclopedia), vol. 29: Perspektivy primeneniya nanotekhnologii i nanomaterialov pri sozdanii novykh obraztsov kosmicheskoi tekhniki dlya realizatsii masshtabnykh kosmicheskikh proektov pervoi poloviny XXI veka (Application Trends for Nanotechnologies and Nanomaterials for Creating New Samples of Space Engineering for Implementing Large-Scale Space Projects of the First Part of the 21th Century), Novikov, L.S. and Khmyrova, A.A., Eds., Moscow: Res. Inst. Energosber. Sist. Tekhnol., 2011.Google Scholar
  2. 2.
    Krasheninnikov, A.V. and Nordlund, K., J. Appl. Phys., 2010, vol. 107, p. 071301.ADSCrossRefGoogle Scholar
  3. 3.
    Voronina, E.N., Novikov, L.S., and Chirskaya, N.P., Bull. Russ. Acad. Sci.: Phys., 2011, vol. 75, no. 11, p. 1500.CrossRefGoogle Scholar
  4. 4.
    Ion Beams in Nanoscience and Technology, Hellborg, R., Whitlow, H.J., and Zhang, Y., Berlin: Springer, 2009.Google Scholar
  5. 5.
    Atomic and Ion Collisions in Solids and at Surfaces: Theory, Simulation and Applications, Smith, R., Ed., New York: Cambridge Univ, Press, 2005.Google Scholar
  6. 6.
  7. 7.
    GEANT - Detector Description and Simulation Tool, Geneva, CERN, 1993.Google Scholar
  8. 8.
    Lehtinen, O., Kotakoski, J., Krasheninnikov, A.V., et al., Phys. Rev. B, 2010, vol. 81, p. 153401.ADSCrossRefGoogle Scholar
  9. 9.
    Handbook of Material Modeling, Yip, S., Ed., Berlin: Springer, 2005.Google Scholar
  10. 10.
    Saito, S., Takayama, A., Ito, A.M., Kenmotsu, T., and Nakamura, H., Progr. Nucl. Sci. Techn., 2011, vol. 2, p. 44.Google Scholar
  11. 11.
    Kotakoski, J., Krasheninnikov, A.V., and Nordlung, K., J. Comp. Theor. Nanosci., 2007, vol. 4, p. 1153.Google Scholar
  12. 12.
    Kotakoski, J., Jin, C.H., Lehtinen, O., Suenaga, K., and Krasheninnikov, A.V., Phys. Rev. B, 2010, vol. 82, p. 113404.ADSCrossRefGoogle Scholar
  13. 13.
    Time-Dependent Density Functional Theory, Marques, M.A.L., Ullrich, C.A., Nogueira, F., et al., Eds., Berlin: Springer-Verlag, 2006.MATHGoogle Scholar
  14. 14.
    Frauenheim, Th., et al., J. Phys.: Condens. Matter, 2002, vol. 14, p. 3015.ADSCrossRefGoogle Scholar
  15. 15.
    Krasheninnikov, A.V., Lehtinen, P.O., Foster, A.S., and Nieminen, R.M., Chem. Phys. Lett., 2006, vol. 418, p. 132.ADSCrossRefGoogle Scholar
  16. 16.
    Krasheninnikov, A.V., Banhart, F., Li, J.X., et al., Phys. Rev. B, 2005, vol. 72, p. 125428.ADSCrossRefGoogle Scholar
  17. 17.
    Holmström, E., Toikka, L., Krasheninnikov, A.V., and Nordlund, K., Phys. Rev. B, 2010, vol. 82, p. 045420.ADSCrossRefGoogle Scholar
  18. 18.
    Krasheninnikov, A.V., Miyamoto, Y., and Tomanek, D., Phys. Rev. Lett., 2007, vol. 99, p. 016104.ADSCrossRefGoogle Scholar
  19. 19.
    Björkman, T., Gulans, A., Krasheninnikov, A.V., and Nieminen, R.M., J. Phys.: Condens. Matter, 2012, vol. 24, p. 424218.ADSCrossRefGoogle Scholar
  20. 20.
  21. 21.
    Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1996, vol. 77, p. 3865.ADSCrossRefGoogle Scholar
  22. 22.
    Monkhorst, H.J. and Pack, J.D., Phys. Rev. B, 1976, vol. 13, p. 5188.MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Frenzel, J., Oliveira, A.F., Jardillier, N., et al., Semi-Relativistic, Self-Consistent Charge Slater-Koster Tables for Density-Functional Based Tight-Binding (DFTB) for Materials Science Simulations, TU-Dresden, 2004–2009.Google Scholar
  24. 24.
    Jin, Ch., Lin, F., Suenaga, K., and Iijima, S., Phys. Rev. Lett., 2009, vol. 102, p. 195505.ADSCrossRefGoogle Scholar
  25. 25.
    Li, X.M., Tian, W.Q., and Huang, H.R., J. Nanopart. Res., 2009, vol. 11, p. 395.CrossRefGoogle Scholar
  26. 26.
    Shpilman, Z., Gouzman, I., Grossman, E., et al., J. Phys. Chem. C, 2010, vol. 114, p. 18996.CrossRefGoogle Scholar
  27. 27.
    Voronina, E.N., Novikov, L.S., Chernik, V.N., et al., Inorg. Mat.: Appl. Res., 2012, vol. 3, no. 2, p. 95.CrossRefGoogle Scholar
  28. 28.
    Zobelli, A., Gloter, A., Ewels, C.P., et al., Phys. Rev. B, 2007, vol. 75, p. 245402.ADSCrossRefGoogle Scholar
  29. 29.
    Voevodin, Vl.V., Zhumatii, S.A., Sobolev, S.I., et al., Otkryt. Sist., 2012, no. 7.Google Scholar

Copyright information

© Allerton Press, Inc. 2013

Authors and Affiliations

  1. 1.Skobeltsyn Research Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations