Advertisement

Peninsula of neutron stability of nuclei in the neighborhood of neutron magic number N = 126

  • V. N. TarasovEmail author
  • K. A. Gridnev
  • W. Greiner
  • S. Schramm
  • D. K. Gridnev
  • D. V. Tarasov
  • X. Viñas
Proceedings of the International Conference “Nucleus-2012”. “Fundamental Problems of Nuclear Physics, Atomic Power Engineering and Nuclear Technologies” (The 62nd International Conference on Nuclear Spectroscopy and the Structure of Atomic Nuclei)

Abstract

The properties of the ground state of even-even nuclei with extreme neutron excess that are remote from the known neutron drip line (NDL) are calculated. The calculations are based on the Hartree-Fock method with Skyrme forces SkM*, SkI2, Sly4, Ska) with allowance for axial deformation and the BCS pairing approximation. It is shown that the isotone chain at the neutron number N = 126 beyond the NDL forms a peninsula of nuclei that are stable with respect to the emission of one neutron (PNS). The neutron and proton density distributions of the PNS nuclei have spherical symmetry. A mechanism for restoring the stability of nuclei beyond the NDL is discussed. The obtained results are compared with those from Hartree-Fock-Bogoliubov calculations for long isotope chains of Zr and Pd up to the NDL.

Keywords

Skyrme Force Neutron Drip Line Neutron Stability Neutron Magic Number Proton Density Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bender, M., Heenen, P.-H., and Reinhard, P.-G., Rev. Mod. Phys., 2003, vol. 75, p. 121.ADSCrossRefGoogle Scholar
  2. 2.
    Stoitsov, M.V., et al., Phys. Rev. C, 2003, vol. 61, p. 034311.ADSCrossRefGoogle Scholar
  3. 3.
    Stoitsov, M.V., et al., Phys. Rev. C, 2003, vol. 68, p. 054312. http://www.fuw.edu.pl/~dobaczew/thodri/thodri.html ADSCrossRefGoogle Scholar
  4. 4.
    Tajima, N., Progr. Theor. Phys. Supl., 2001, no. 142, p. 265.Google Scholar
  5. 5.
    Meng, J., et al., Prog. Part. Nucl. Phys., 2006, vol. 57, p. 470.ADSCrossRefGoogle Scholar
  6. 6.
    Gridnev, K.A., et al., Eur. Phys. J. A, 2005, vol. 25, p. 353.CrossRefGoogle Scholar
  7. 7.
    Gridnev, K.A., Gridnev, D.K., Kartavenko, V.G., Mitroshin, V.E., Tarasov, V.N., Tarasov, D.V., and Greiner, W., Phys. Atom. Nucl., 2006, vol. 69, p. 1.ADSCrossRefGoogle Scholar
  8. 8.
    Gridnev, K.A., et al., J. Mod. Phys. E, 2006, vol. 15, p. 673.ADSCrossRefGoogle Scholar
  9. 9.
    Tarasov, V.N., Tarasov, D.V., Gridnev, K.A., Gridnev, D.K., Kartavenko, V.G., Greiner, W., and Mitroshin, V.E., Bull. Russ. Acad. Sci. Phys., 2007, vol. 71, no. 6, p. 747.CrossRefGoogle Scholar
  10. 10.
    Tarasov, V.N., et al., J. Mod. Phys. E, 2008, vol. 17, p. 1273.ADSCrossRefGoogle Scholar
  11. 11.
    Tarasov, V.N., Gridnev, K.A., Gridnev, D.K., Kuprikov, V.I., Tarasov, D.V., Greiner, W., and Vinyes, X., Bull. Russ. Acad. Sci. Phys., 2010, vol. 74, no. 11, p. 1559.CrossRefGoogle Scholar
  12. 12.
    Tarasov, V.N., Gridnev, K.A., Greiner, W., Gridnev, D.K., Kuprikov, V.I., Tarasov, D.V., and Viñas, X., Phys. Atom. Nucl., 2012, vol. 75, p. 17.ADSCrossRefGoogle Scholar
  13. 13.
    Tarasov, V.N., Gridnev, K.A., Greiner, W., Schramm, S., Gridnev, D.K., Tarasov, D.V., and Viñas, X., Bull. Russ. Acad. Sci. Phys., 2012, vol. 76, no. 8, p. 876.CrossRefGoogle Scholar
  14. 14.
    Gridnev, K.A., Greiner, W., Tarasov, V.N., Schramm, S., Gridnev, D.K., Tarasov, D.V., and Viñas, X., Bull. Russ. Acad. Sci. Phys., 2012, vol. 76, no. 8, p. 871.CrossRefGoogle Scholar
  15. 15.
    Sharma, M.M. and Saldanha, A.A., Kuwait J. Sci. Eng., 2011, vol. 38, pp. 39–58.Google Scholar
  16. 16.
    Vautherin, D. and Brink, D.M., Phys. Rev. C, 1972, vol. 5, p. 626.ADSCrossRefGoogle Scholar
  17. 17.
    Vautherin, D., Phys. Rev. C, 1973, vol. 7, p. 296.ADSCrossRefGoogle Scholar
  18. 18.
    Tarasov, V.N., et al., Preprint of Central Scientific Institute for Atomic Information, Moscow, 1985, no. KhFTI 85-32.Google Scholar
  19. 19.
    Köhler, H.S., Nucl. Phys. A, 1976, vol. 258, p. 301.ADSCrossRefGoogle Scholar
  20. 20.
    Bartel, J., et al., Nucl. Phys. A, 1982, vol. 386, p. 79.ADSCrossRefGoogle Scholar
  21. 21.
    Chabanat, E., et al., Nucl. Phys. A, 1998, vol. 635, p. 231; Nucl. Phys. A, 1998, vol. 643, p. 441(E).ADSCrossRefGoogle Scholar
  22. 22.
    Reinhard, P.-G. and Flocard, H., Nucl. Phys. A, 1995, vol. 584, p. 467.ADSCrossRefGoogle Scholar
  23. 23.
    Inopin, E.V., Gonchar, V.Yu., and Kuprikov, V.I., Yad. Fiz., 1976, vol. 24, p. 40.Google Scholar
  24. 24.
    Mitroshin, V.E., Phys. Atom. Nucl., 2005, vol. 68, p. 1314.ADSCrossRefGoogle Scholar
  25. 25.
    Hilaire, S. and Girod, M., Eur. Phys. J. A, 2007, vol. 33, p. 237.ADSCrossRefGoogle Scholar
  26. 26.
    Del Estal, M., et al., Phys. Rev. C, 2001, vol. 63, p. 044321.ADSCrossRefGoogle Scholar
  27. 27.
    Mizutori, S., et al., Phys. Rev. C, 2000, vol. 61, p. 044326.ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2013

Authors and Affiliations

  • V. N. Tarasov
    • 1
    Email author
  • K. A. Gridnev
    • 2
    • 3
  • W. Greiner
    • 3
  • S. Schramm
    • 3
  • D. K. Gridnev
    • 3
  • D. V. Tarasov
    • 1
  • X. Viñas
    • 4
  1. 1.Kharkov Institute of Physics and TechnologyKharkovUkraine
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia
  3. 3.Frankfurt Institute for Advanced StudiesFrankfurt-am-MainGermany
  4. 4.University of BarcelonaBarcelonaSpain

Personalised recommendations