Advertisement

Few-nucleon transfers and weakly dissipative processes in the GRAZING model of low-energy nuclear reactions

  • V. V. SamarinEmail author
Proceedings of the International Conference “Nucleus-2012”. “Fundamental Problems of Nuclear Physics, Atomic Power Engineering and Nuclear Technologies” (The 62nd International Conference on Nuclear Spectroscopy and the Structure of Atomic Nuclei)

Abstract

The applicability of Winther’s semi-classical model in the GRAZING program to a representative set of low-energy nuclear reactions is examined. It is demonstrated that the model describes the processes of few-nucleon transfers with low dissipation of energy for spherical nuclei 40Ca, 96Zr, 208Pb, and others. Satisfactory agreement with experimental data is observed for transfers of no more than one proton and approximately 6–8 neutrons. The reactions in which the agreement with experimental data is poor at a standard set of parameters are indicated.

Keywords

208Pb Single Particle State Nucleus Surface Nucleon Transfer Reaction 56Fe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Winther, A., Nucl. Phys. A, 1995, vol. 594, p. 203.ADSCrossRefGoogle Scholar
  2. 2.
    Winther, A., Nucl. Phys. A, 1994, vol. 572, p. 191.ADSCrossRefGoogle Scholar
  3. 3.
  4. 4.
    Szilner, S., et al., Phys. Rev. C, 2007, vol. 76, p. 024604.ADSCrossRefGoogle Scholar
  5. 5.
    Data Base on Low-Energy Nuclear Reactions Nuclear Reaction Video. http://nrv.jinr.ru/nrv/
  6. 6.
    Ignatyuk, A.V., Statisticheskie svoistva vozbuzhdennykh atomnykh yader (Statistical Properties of Excited Atomic Nuclei), Moscow: Energoatomizdat, 1983.Google Scholar
  7. 7.
    Szilner, S., et al., Phys. Rev. C, 2005, vol. 71, p. 044610.ADSCrossRefGoogle Scholar
  8. 8.
    Pollarolo, G., AIP Conf. Proc., 2006, vol. 853, no. 29, p. 29.ADSCrossRefGoogle Scholar
  9. 9.
    Corradi, L., Pollarolo, G., and Szilner, S., J. Phys. G: Nucl. Part. Phys., 2009, vol. 36, p. 113101.ADSCrossRefGoogle Scholar
  10. 10.
    Corradi, L., et al., Phys. Rev. C, 1996, vol. 54, p. 201.ADSCrossRefGoogle Scholar
  11. 11.
    Corradi, L., et al., Phys. Rev. C, 2000, vol. 61, p. 024609.ADSCrossRefGoogle Scholar
  12. 12.
    Corradi, L., Nucl. Phys. A, 2001, vol. 685, p. 37.ADSCrossRefGoogle Scholar
  13. 13.
    Corradi, L., et al., Phys. Rev. C, 1994, vol. 49, p. 2875.ADSCrossRefGoogle Scholar
  14. 14.
    Rehm, K.E., et al., Phys. Rev. C, 1988, vol. 37, p. 2629.ADSCrossRefGoogle Scholar
  15. 15.
    Corradi, L., Pollarolo, G., and Winther, A., Phys. Rev. C, 2002, vol. 66, p. 024606.ADSCrossRefGoogle Scholar
  16. 16.
    Hoover, A.D., et al., Phys. Rev. C, 1982, vol. 25, p. 256.ADSCrossRefGoogle Scholar
  17. 17.
    Eyal, Y., et al., Phys. Rev. C, 1980, vol. 21, p. 2509.CrossRefGoogle Scholar
  18. 18.
    Tserruya, I., et al., Phys. Rev. Lett. C, 1981, vol. 47, p. 16.ADSCrossRefGoogle Scholar
  19. 19.
    Tserruya, I., et al., Phys. Rev. C, 1982, vol. 26, p. 2509.ADSCrossRefGoogle Scholar
  20. 20.
    Birkelund, J.R., et al., Phys. Rev. C, 1982, vol. 26, p. 1984.ADSCrossRefGoogle Scholar
  21. 21.
    Schroder, W.U., et al., Phys. Rep., 1978, vol. 45, p. 301.ADSCrossRefGoogle Scholar
  22. 22.
    Wilcke, W.W., et al., Phys. Rev. C, 1980, vol. 22, p. 128.ADSCrossRefGoogle Scholar
  23. 23.
    Wollersheim, H.J., et al., Phys. Rev. C, 1981, vol. 24, p. 2114.ADSCrossRefGoogle Scholar
  24. 24.
    Bondorf, J.P., et al., Phys. Rev. C, 1993, vol. 48, p. 459.ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2013

Authors and Affiliations

  1. 1.Joint Institute for Nuclear ResearchDubna, Moscow oblastRussia

Personalised recommendations