Advertisement

P-odd asymmetries for the binary fission of oriented target nuclei, induced by cold polarized neutrons

  • S. G. KadmenskyEmail author
  • L. V. Titova
  • V. E. Bunakov
Proceedings of the International Conference “Nucleus-2012”. “Fundamental Problems of Nuclear Physics, Atomic Power Engineering and Nuclear Technologies” (The 62nd International Conference on Nuclear Spectroscopy and the Structure of Atomic Nuclei)

Abstract

P-odd asymmetries in binary fission of oriented target nuclei induced by cold polarized neutrons are described for the first time using methods of the quantum theory of fission. A spin matrix of the compound nucleus density is constructed with allowance for the interference of the fission amplitudes of various pairs of neutron resonances excited in the given nucleus during the capture of a cold polarized neutron by the oriented target nucleus. In the differential cross sections for this reaction we obtain not only P-odd T-even correlations with the angular dependence different from that of the earlier investigated correlations in the fission of unoriented target nuclei by polarized neutrons but also P-odd T-odd correlations that do not occur in the fission of unoriented target nuclei by polarized neutrons and oriented target nuclei by unpolarized neutrons.

Keywords

Differential Cross Section Target Nucleus Binary Fission Neutron Resonance Spin Density Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Danilyan, G.V., Vodennikov, B.D., Dronyaev, V.P., et al., JETP Lett., 1977, vol. 26, p. 197.Google Scholar
  2. 2.
    Beda, A.G., et al., JETP Lett., 1983, vol. 38, p. 168.ADSGoogle Scholar
  3. 3.
    Koetzle, A., et al., Nucl. Instrum. Methods A, 2000, vol. 440, p. 750.ADSCrossRefGoogle Scholar
  4. 4.
    Belozerov, A.M., Danilyan G.V., et al., JETP Lett., 1983, vol. 38, p. 136.Google Scholar
  5. 5.
    Sushkov, O.P. and Flambaum, V.V., Phys. Usp., 1982, vol. 25, p. 1.ADSCrossRefGoogle Scholar
  6. 6.
    Bunakov, V.E. and Gudkov, V.P., Z. Phys. A, 1985, vol. 321, p. 277.ADSGoogle Scholar
  7. 7.
    Barabanov, A.L. and Furman, W.I., Z. Phys. A, 1997, vol. 357, p. 411.ADSCrossRefGoogle Scholar
  8. 8.
    Kadmensky, S.G., Phys. Atom. Nucl., 2003, vol. 66, p. 1691.ADSCrossRefGoogle Scholar
  9. 9.
    Bunakov, V.E. and Kadmensky S.G., Bull. Russ. Acad. Sci. Phys., 2008, vol. 71, p. 2030.Google Scholar
  10. 10.
    Kadmensky, S.G., Markushev, V.P., and Furman, W.I., Sov. J. Nucl. Phys., 1982, vol. 35, p. 166.Google Scholar
  11. 11.
    Bohr, A., Proc. Int. Conf. on Peaceful Use of Atomic Energy, Geneva, 1955, vol. 5, p. 200.Google Scholar
  12. 12.
    Kadmensky, S.G., Bunakov, V.E., and Titova, L.V., Bull. Russ. Acad. Sci. Phys., 2012, vol. 76, no. 8, p. 1060.Google Scholar
  13. 13.
    Davydov, A.S., Teoriya atomnogo yadra (Theory of Atomic Nucleus), Moscow: Fizmatgiz, 1958.Google Scholar
  14. 14.
    Varshalovich, D.A., Moskalev, A.N., and Khersonskii, V.K., Kvantovaya teoriya uglovogo momenta (Quantum Theory of Angular Moment), Leningrad: Nauka, 1975.Google Scholar
  15. 15.
    Barabanov, A.L., Simmetrii i spin-uglovye korrelyatsii v reaktsiyakh i raspadakh (Symmetries and Spin-Angular Correlations in Reactions and Decays), Moscow: Fizmatlit, 2012.Google Scholar

Copyright information

© Allerton Press, Inc. 2013

Authors and Affiliations

  • S. G. Kadmensky
    • 1
    Email author
  • L. V. Titova
    • 1
  • V. E. Bunakov
    • 2
  1. 1.Voronezh State UniversityVoronezhRussia
  2. 2.St. Petersburg Nuclear Physics InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations