Skip to main content

Magnetostatic interaction effects in an ordering hexagonal array of ferromagnetic nanoparticles

Abstract

The results from investigating magnetostatic interaction effects in ordered hexagonal arrays of anisotropic single-domain ferromagnetic nanoparticles are presented. It is demonstrated theoretically and experimentally that two stable states (with quasi-uniform configurations of magnetic moments and with zero averaged magnetic moment configurations) can be easily attained in such arrays. It is shown that the structure of an ferromagnetic resonance spectrum depends strongly on the extent of magnetostatic interaction and the spatial configuration of the magnetic moments in the array.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Wang, R.F., Nisoli, C., Freitas, R.S., et al., Nature, 2006, vol. 439, pp. 303–306.

    ADS  Article  Google Scholar 

  2. 2.

    Nisoli, C., Wang, R., Li, J., et al., Phys. Rev. Lett., 2007, vol. 98, pp. 217203 1–4.

    ADS  Article  Google Scholar 

  3. 3.

    Westphalen, A., Schumann, A., Remhof, A., et al., Phys. Rev. B, 2008, vol. 77, pp. 174407 1–13.

    ADS  Article  Google Scholar 

  4. 4.

    Mengotti, E. Heyderman, L.J., et al., Phys. Rev. B, 2008, vol. 78, pp. 144402 1–7.

    ADS  Article  Google Scholar 

  5. 5.

    Schumann, A., Sothmann, B., Szary, P., and Zabel, H., Appl. Phys. Lett., 2010, vol. 97, pp. 022509 1–3.

    Article  Google Scholar 

  6. 6.

    Mengotti, E., Heyderman, L.J., Bisig, A., et al., J. Appl. Phys., 2009, vol. 105, pp. 113113 1–4.

    Article  Google Scholar 

  7. 7.

    Donahue, M.J. and Porter, D.G., “OOMMF User’s Guide”, Integragency Report NISTIR 6376, Gaithersburg: National Institute of Standards and Technology. http://math.nist.gov/oommf

  8. 8.

    Murthy, V., Satya Narayana, Krishnamoorthi, C., Mahendiran, R., and Adeyeye, A.O., J. Appl. Phys., 2009, vol. 105, p. 023916.

    ADS  Article  Google Scholar 

  9. 9.

    Mironov, V.L., Ermolaeva, O.L., Gusev, S.A., et al., Phys. Rev. B, 2010, vol. 81, pp. 094436 1–5.

    ADS  Article  Google Scholar 

  10. 10.

    Gribkov, B.A., Mironov, V.L., Polushkin, N.I., and Shevtsov, V.B., Poverkhnost’, 2006, no. 5, pp. 19–21.

  11. 11.

    Chang, J., Mironov, V.L., Gribkov, B.A., et al., J. Appl. Phys., 2006, vol. 100, pp. 104304-1–7.

    ADS  Google Scholar 

  12. 12.

    Mironov, V.L., Fraerman, A.A., Gribkov, B.A., et al., Phys. Met. Metallogr., 2010, vol. 110, no. 7, pp. 708–734.

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. L. Mironov.

Additional information

Original Russian Text © V.L. Mironov, O.L. Ermolaeva, E.V. Skorokhodov, J.A. Blackman, 2013, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2013, Vol. 77, No. 1, pp. 37–40.

About this article

Cite this article

Mironov, V.L., Ermolaeva, O.L., Skorokhodov, E.V. et al. Magnetostatic interaction effects in an ordering hexagonal array of ferromagnetic nanoparticles. Bull. Russ. Acad. Sci. Phys. 77, 32–35 (2013). https://doi.org/10.3103/S1062873813010188

Download citation

Keywords

  • Magnetization Reversal
  • Average Magnetic Moment
  • Magnetostatic Interaction
  • Ferromagnetic Nanoparticles
  • Micromagnetic Modeling