Advertisement

Generating high harmonics in a superlattice based on graphene in the presence of static and alternating electric fields

  • S. Yu. GlazovEmail author
  • N. E. Mescheryakova
  • D. V. Martynov
Proceedings of the XIII All-Russia Seminar “The Wave Phenomena in Inhomogeneous Media”

Abstract

The generation of high harmonics of current density in a superlattice based on graphene on a striped substrate is considered under the influence of static and alternating electric fields polarized along the superlattice axis. The areas of system parameter values are revealed for the first four harmonics, the amplitude of each of which surpasses the other three.

Keywords

High Harmonic Static Electric Field Generate High Harmonic Hexagonal Crystal Lattice Semiconductor Carbon Nanotubes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chernozatonskii, L.A., Sorokin, P.B., Belova, E.E., et al., JETP Lett., 2006, vol. 84, no. 3, p. 115.CrossRefGoogle Scholar
  2. 2.
    Chernozatonskii, L.A., Sorokin, P.B., Belova, E.E., et al., JETP Lett., 2007, vol. 85, no. 1, p. 77.ADSCrossRefGoogle Scholar
  3. 3.
    Sevincli, H., Topsakal, M., and Ciraci, S., Phys. Rev. B, 2008, vol. 78, p. 245402.ADSCrossRefGoogle Scholar
  4. 4.
    Ratnikov, P.V., JETP Lett., 2009, vol. 90, no. 6, p. 469.ADSCrossRefGoogle Scholar
  5. 5.
    Kryuchkov, S.V., Kukhar’, E.I., and Yakovenko, V.A., Bull. Russ. Acad. Sci. Phys., 2010, vol. 74, no. 12, p. 1679.zbMATHCrossRefGoogle Scholar
  6. 6.
    Barbier, M., Vasilopoulos, P., and Peeters, F.M., Phil. Trans. R. Soc. A, 2010, vol. 368, p. 5499.MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    Bolmatov, D. and Chung-Yu Mou, JETP, 2011, vol. 112, no. 1, p. 102.ADSCrossRefGoogle Scholar
  8. 8.
    Zav’yalov, D.V., Konchenkov, V.I., and Kryuchkov, S.V., Fiz. Tekh. Poluprovodn., 2012, vol. 46, no. 5, p. 684.Google Scholar
  9. 9.
    Glazov, S.Yu. and Meshcheryakova, N.E., Nanosist.: Fiz., Khim., Mat., 2012, vol. 3, no. 1, p. 64.Google Scholar
  10. 10.
    Kryuchkov, S.V. and Kukhar’, E.I., Fiz. Tekh. Poluprovodn., 2012, vol. 3, no. 1, p. 64.Google Scholar
  11. 11.
    Mikhailov, S.A., Europhys. Lett., 2007, vol. 79, p. 27002.ADSCrossRefGoogle Scholar
  12. 12.
    Dean, J.J. and van Driel, H.M., Appl. Phys. Lett., 2009, vol. 95, p. 261910.ADSCrossRefGoogle Scholar
  13. 13.
    Dean, J.J. and van Driel, H.M., Phys. Rev., 2010, vol. 82, p. 125411.ADSCrossRefGoogle Scholar
  14. 14.
    Glazov, M.M., JETP Lett., 2011, vol. 93, no. 7, p. 366.ADSCrossRefGoogle Scholar
  15. 15.
    Belonenko, M.B., Glazov, S.Yu., and Meshcheryakova, N.E., Bull. Russ. Acad. Sci. Phys., 2009, vol. 73, no. 12, p. 1601.zbMATHCrossRefGoogle Scholar
  16. 16.
    Belonenko, M.B., Glazov, S.Yu., and Meshcheryakova, N.E., Opt. Spektrosk., 2010, vol. 108, no. 5, p. 818.CrossRefGoogle Scholar
  17. 17.
    Shmelev, G.M., Valgutskova, E.N., and Epshtein, E.M., arXiv:cond-mat/0410246. 2004.Google Scholar

Copyright information

© Allerton Press, Inc. 2012

Authors and Affiliations

  • S. Yu. Glazov
    • 1
    Email author
  • N. E. Mescheryakova
    • 2
  • D. V. Martynov
    • 1
  1. 1.Volgograd State Social Pedagogical UniversityVolgogradRussia
  2. 2.Volgograd Business InstituteVolgogradRussia

Personalised recommendations