Skip to main content
Log in

Comparing specific features of the structural formation of aluminum alloys during severe and intense plastic deformation

  • Proceedings of the Second Moscow Readings on Strength of Materials Devoted to the 80th Anniversary of the Birthday of Academician Yu. A. Ossipyan
  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

We compare the deformation behavior and specific features of the structural formation of two aluminum alloys, AMTs and V95, upon megaplastic (MPD) and severe plastic (SPD) deformation. It is established that upon SPD by dynamic channel angular pressing, a submicron crystalline structure is formed with grain sizes of 200 to 600 nm; and that upon MPD by high quasi-hydrostatic pressure shearing, a nanostructure is formed with grain sizes of 55 to 100 nm. The sequence of the phase and structure transition is established for an increase in the rate of deformation and velocity of the materials. Mechanisms of elastic energy relaxation are determined as a function of the extent of dislocation mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Valiev, R.Z. and Aleksandrov, I.V., Ob”emnye nanostrukturnye metallicheskie materialy: poluchenie, struktura i svoistva (Volumetric Nanostructure Materials: Synthesis, Structure and Properties), Moscow: Akademkniga, 2007.

    Google Scholar 

  2. Segal, V.M., Metally, 2004, no. 1, pp. 5–13.

  3. Zhilyaev, A.P. and Pshenichnyuk, A.I., Sverkhplastichnost’ i granitsy zeren v ul’tramelkozernistykh materialakh (Superplasticity and Grain Boundaries in Ultra FineGrain Materials), Moscow: Fizmatlit, 2008.

    Google Scholar 

  4. Perspektivnye materialy. Struktura i metody issledovaniya: Ucheb. posobie (Promising Materials. Structure and Research Methods. Student’s Book), Meerson, D.L., Ed., Togliatti: TGU, MISiS, 2006.

    Google Scholar 

  5. Markushev, M.V. and Murashkin, M.Yu., Fiz. Met. Metalloved., 2000, vol. 90, no. 5, pp. 92–101.

    Google Scholar 

  6. Shorokhov, E.V., Zhgilev, I.N., and Valiev, R.Z., RF Patent 2283717, Byull. Izobret., 2006, no. 26.

  7. Khomskaya, I.V., Zel’dovich, V.I., Frolova, N.Yu., et al., Khim. Fiz., 2007, vol. 26, no. 12, pp. 64–68.

    Google Scholar 

  8. Zel’dovich, V.I., Shorokhov, E.V., Frolova, N.Yu., et al., Fiz. Met. Metalloved., 2008, vol. 105, no. 4, pp. 431–437.

    Google Scholar 

  9. Hirsh, J.P. and Lothe, J., Theory of Dislocations, New York: McGraw-Hill, 1968; Moscow: Atomizdat, 1972.

    Google Scholar 

  10. Trefilov, V.I., Moiseev, V.F., Pechkovskii, E.P., et al., Deformatsionnoe uprochnenie i razrushenie polikristallicheskikh metallov (Deformation Strength and Destruction of Polycrystalline Metals), Trefilov, V.I., Ed., Kiev: Naukova dumka, 1989.

    Google Scholar 

  11. Gorelik, S.S., Dobatkin, S.V., and Kaputkina, L.M., Rekristallizatsiya metallov i splavov (Metals and Alloys Recrystallization), Moscow: MISIS, 2005.

    Google Scholar 

  12. Brodova, I.G., Shorokhov, E.V., Shirinkina, I.G., et al., Fiz. Met. Metalloved., 2008, vol. 105, no. 6, pp. 630–637.

    Google Scholar 

  13. Shirinkina, I.G., Petrova, A.N., Brodova, I.G., et al., Fiz. Met. Metalloved., 2012, vol. 113, no. 2, pp. 1–6.

    Google Scholar 

  14. Bykov, V.M., Likhachev, V.A., Nikonov, Yu.A., et al., Fiz. Met. Metalloved., 1978, vol. 45, no. 1, pp. 163–169.

    Google Scholar 

  15. Glezer, A.M., Bull. Russ. Acad. Sci. Phys., 2007, vol. 71, no. 12, p. 1722.

    Article  Google Scholar 

  16. Brodova, I.G., Shirinkina, I.G., Antonova, O.V., et al., Mater. Sci. Eng. A, 2009, vol. 503, pp. 103–105.

    Article  Google Scholar 

  17. Brodova, I., Shirinkina, I., and Petrova, A., Mater. Sci. Forum, 2011, vols. 667–669, pp. 517–521.

    Google Scholar 

  18. Brodova, I.G., Shirinkina, I.G., Petrova, A.N., et al., Fiz. Met. Metalloved., 2011, vol. 111, no. 6, pp. 659–667.

    Google Scholar 

  19. Gapontsev, V.L. and Kondrat’ev, V.V., Dokl. Akad. Nauk, 2002, vol. 385, no. 5, pp. 684–687.

    Google Scholar 

  20. Perevezentsev, V.N. and Sarafanov, G.F., Fragmentatsiya pri plasticheskoi deformatsii (Fragmentation under Plastic Deformation), Nizhni Novgorod: NNGU, 2007.

    Google Scholar 

  21. Rybin, V.V., Bol’shie plasticheskie deformatsii i razrushenie metallov (Great Plastic Deformations and Destruction in Metals), Moscow: Metallurgiya, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Brodova.

Additional information

Original Russian Text © I.G. Brodova, A.N. Petrova, I.G. Shirinkina, 2012, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2012, Vol. 76, No. 11, pp. 1378–1383.

About this article

Cite this article

Brodova, I.G., Petrova, A.N. & Shirinkina, I.G. Comparing specific features of the structural formation of aluminum alloys during severe and intense plastic deformation. Bull. Russ. Acad. Sci. Phys. 76, 1233–1237 (2012). https://doi.org/10.3103/S1062873812110056

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873812110056

Keywords

Navigation