Advertisement

Bulletin of the Russian Academy of Sciences: Physics

, Volume 76, Issue 9, pp 1015–1019 | Cite as

Eliminating distortions of nonperiodic structures in images

  • B. N. GrudinEmail author
  • S. V. Dolzhikov
  • V. S. Plotnikov
  • N. A. Smolyaninov
  • S. V. Polishuk
Proceedings of the XVII Russian Symposium on Scanning Electron Microscopy and Analytical Methods of Investigation Applied for Solid States Physics
  • 19 Downloads

Abstract

Methods for reconstructing distorted images of microstructures are proposed. The spatial-frequency filtering of a distorted image, as a result of which the distribution of the Fourier transform phases of this image is adjusted according to the distribution of zeros of the visualization system’s frequency characteristic, and the amplitude distribution is transformed so that the Fourier spectrum’s integrated frequency characteristic (IFC) is modified into a function that decays according to the power law.

Keywords

Spatial Frequency Discrete Fourier Transform Distorted Image Spherical Aberration Polar Coordinate System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Spence, J.C.H., Experimental High-Resolution Electron Microscopy, New York: Oxford Univ. Press, 1980; Moscow: Nauka, 1986.Google Scholar
  2. 2.
    Reimer, L. and Kohl, H., Transmission Electron Microscopy, Aachen: Springer, 2008.Google Scholar
  3. 3.
    Cowley, J.M., Diffraction Physics, Amsterdam North-Holland, 1975; Moscow: Mir, 1979.Google Scholar
  4. 4.
    Kirkland, E.J., Advanced Computing in Electron Microscopy, New York, London: Plenum Press, 1998.Google Scholar
  5. 5.
    Plotnikov, V.S., Grudin, B.N., and Kislenok, E.G., Fiz. Met. Metalloved., 2004, vol. 97, no. 4, p. 3.Google Scholar
  6. 6.
    Grudin, B.N., Plotnikov, V.S., Fishechenko, V.K., and Dolznikov, S.V., Bull. Russ. Acad. Sci. Phys., 2001, vol. 65, no. 10, p. 1528.Google Scholar
  7. 7.
    Grudin, B.N., Kislenok, E.G., Plotnikov, V.S., and Fishchenko, V.K., Avtometriya, 2007, vol. 43, no. 1, p. 24.Google Scholar
  8. 8.
    Schroeder, M., Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise, New York: Freeman, 1991; Izhevsk: “RKhD”, 2001.zbMATHGoogle Scholar
  9. 9.
    Mandelbrot, B.B. and Van Ness, J.W., SIAM Rev., 1968, vol. 10, no. 4, p. 422.MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Grudin, B.N., Plotnikov, V.S., and Pokrashenko, A.A., Fiz. Met. Metalloved., 2000, vol. 90, no. 6, p. 58.Google Scholar

Copyright information

© Allerton Press, Inc. 2012

Authors and Affiliations

  • B. N. Grudin
    • 1
    Email author
  • S. V. Dolzhikov
    • 1
  • V. S. Plotnikov
    • 1
  • N. A. Smolyaninov
    • 1
  • S. V. Polishuk
    • 1
  1. 1.Far East State UniversityVladivostokRussia

Personalised recommendations