Abstract
A Kramers’ formulas with corrections of the first and second infinitesimal orders, R F and R S , are derived from the integral Kramers’ formula. In these corrections, we consider higher derivatives of the potential and the distance between the saddle and scission points in R F . The rates R F and R S are compared with the results of dynamic simulations R D . It is shown that R F and R I agree with R D equally well. The calculations are performed for different forms of the potential. Although the corrections are derived for the overdamping mode they can be used for the case of medium friction.
Similar content being viewed by others
References
Kramers, H.A., Physica, 1940, vol. 7, p. 284.
Gontchar, I.I., Fröbrich, P., and Pischasov, N.I., Phys. Rev. C, 1993, vol. 47, p. 2228.
Karpov, A.V., Nadtochy, P.N., Ryabov, E.G., et al., J. Phys. G, 2003, vol. 29, p. 2365.
Jing-Dong Bao and Ying Jia, Phys. Rev. C, 2004, vol. 69, p. 027602.
Gontchar, I.I., Chushnyakova, M.V., Aktaev, N.E., et al., Phys. Rev. C, 2010, vol. 82, p. 064606.
Aktaev, N.E. and Gonchar, I.I., Bull. Russ. Acad. Sci. Phys., 2011, vol. 75, no. 7, p. 994.
Giardina, G., Drozdov, V.A., Eremenko, D.O., Platonov, S.Yu., and Fotina, O.V., Bull. Russ. Acad. Sci. Phys., 2010, vol. 74, no. 6, p. 772.
Yilmaz, B., Ayik, S., Abe, Y., et al., Phys. Rev. E, 2008, vol. 77, p. 011121.
Hofmann, H. and Nix, J.R., Phys. Lett. B, 1983, vol. 122, p. 117.
Boilley, D. and Lallouet, Y., J. Stat. Phys., 2006, vol. 125, p. 477.
Hofmann, H. and Magner, A.G., Phys. Rev. C, 2003, vol. 68, p. 014606.
Edholm, O. and Leimar, O., Physica A, 1979, vol. 98, p. 313.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © E.G. Pavlova, N.E. Aktaev, I.I. Gonchar, 2012, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2012, Vol. 76, No. 10, pp. 1223–1227.
About this article
Cite this article
Pavlova, E.G., Aktaev, N.E. & Gonchar, I.I. Corrections to Kramers’ formula for the fission rate of excited nuclei. Bull. Russ. Acad. Sci. Phys. 76, 1098–1102 (2012). https://doi.org/10.3103/S1062873812080217
Published:
Issue Date:
DOI: https://doi.org/10.3103/S1062873812080217