Advertisement

Corrections to Kramers’ formula for the fission rate of excited nuclei

  • E. G. PavlovaEmail author
  • N. E. Aktaev
  • I. I. Gonchar
Proceedings of the International Conference “Nucleus-2011” (The 61st International Conference on Nuclear Spectroscopy and the Structure of Atomic Nuclei)
  • 28 Downloads

Abstract

A Kramers’ formulas with corrections of the first and second infinitesimal orders, R F and R S , are derived from the integral Kramers’ formula. In these corrections, we consider higher derivatives of the potential and the distance between the saddle and scission points in R F . The rates R F and R S are compared with the results of dynamic simulations R D . It is shown that R F and R I agree with R D equally well. The calculations are performed for different forms of the potential. Although the corrections are derived for the overdamping mode they can be used for the case of medium friction.

Keywords

High Derivative Nuclear Fission Smoluchowski Equation Scission Point Parabolic Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kramers, H.A., Physica, 1940, vol. 7, p. 284.MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    Gontchar, I.I., Fröbrich, P., and Pischasov, N.I., Phys. Rev. C, 1993, vol. 47, p. 2228.ADSCrossRefGoogle Scholar
  3. 3.
    Karpov, A.V., Nadtochy, P.N., Ryabov, E.G., et al., J. Phys. G, 2003, vol. 29, p. 2365.ADSCrossRefGoogle Scholar
  4. 4.
    Jing-Dong Bao and Ying Jia, Phys. Rev. C, 2004, vol. 69, p. 027602.ADSCrossRefGoogle Scholar
  5. 5.
    Gontchar, I.I., Chushnyakova, M.V., Aktaev, N.E., et al., Phys. Rev. C, 2010, vol. 82, p. 064606.ADSCrossRefGoogle Scholar
  6. 6.
    Aktaev, N.E. and Gonchar, I.I., Bull. Russ. Acad. Sci. Phys., 2011, vol. 75, no. 7, p. 994.CrossRefGoogle Scholar
  7. 7.
    Giardina, G., Drozdov, V.A., Eremenko, D.O., Platonov, S.Yu., and Fotina, O.V., Bull. Russ. Acad. Sci. Phys., 2010, vol. 74, no. 6, p. 772.CrossRefGoogle Scholar
  8. 8.
    Yilmaz, B., Ayik, S., Abe, Y., et al., Phys. Rev. E, 2008, vol. 77, p. 011121.ADSCrossRefGoogle Scholar
  9. 9.
    Hofmann, H. and Nix, J.R., Phys. Lett. B, 1983, vol. 122, p. 117.ADSCrossRefGoogle Scholar
  10. 10.
    Boilley, D. and Lallouet, Y., J. Stat. Phys., 2006, vol. 125, p. 477.MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Hofmann, H. and Magner, A.G., Phys. Rev. C, 2003, vol. 68, p. 014606.ADSCrossRefGoogle Scholar
  12. 12.
    Edholm, O. and Leimar, O., Physica A, 1979, vol. 98, p. 313.ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2012

Authors and Affiliations

  1. 1.Omsk State Transport UniversityOmskRussia

Personalised recommendations