Advertisement

Locally covariant description of a π-meson field

  • A. S. SitdikovEmail author
  • A. A. Khamzin
  • A. S. Nikitin
  • S. Yu. Antonov
Proceedings of the International Conference “Nucleus-2011” (The 61st International Conference on Nuclear Spectroscopy and the Structure of Atomic Nuclei)
  • 25 Downloads

Abstract

The algebra of canonical commutation relations is constructed in the Weyl form and a locally covariant formulation of a charged scalar field is presented in terms of the covariant functor. The symplectic space of solutions of the Klein-Gordon-Fock equation is represented as a direct sum of symplectic spaces of positively and negatively charged π mesons. In each of the spaces, these fields satisfy the conditions of the locally covariant quantum field theory. Using natural transformation, the equivalence of two functors describing the π+ and π mesons is shown. From the physical viewpoint, the equivalence corresponds to the equality of the mesons’ masses.

Keywords

Isometric Embedding Covariant Functor Cauchy Surface Symplectic Space Hyperbolic Space Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wightman, A.S., Introduction to Some Aspects of the Relativistic Dynamics of Quantized Fields, New York: Gordon and Breach, 1965; Moscow: Nauka, 1968.Google Scholar
  2. 2.
    Bogolyubov, N.N., Logunov, A.A., and Todorov, I.T., Osnovy aksiomaticheskogo podkhoda v kvantovoi teorii polya (Foundations of Axiomatic Approach in Quantum Field Theory), Moscow: Nauka, 1969.zbMATHGoogle Scholar
  3. 3.
    Bogolyubov, N.N. and Shirokov, D.V., Vvedenie v teoriyu kvantovykh polei (Introduction into Quantum Field Theory), Moscow: Nauka, 1984.Google Scholar
  4. 4.
    Indurain, F.J., Quantum Chromodynamics, Moscow: Mir, 1967; Berlin, Heidelberg: Springer, 1983.Google Scholar
  5. 5.
    Goldberger, M.L., Phys. Rev., 1955, vol. 99, p. 986.ADSzbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Jost, R., The General Theory of Quantized Fields, AMS, 1965; Moscow: Mir, 1967.Google Scholar
  7. 7.
    Haag, R. and Kastler, D., J. Math. Phys., 1964, vol. 5, p. 848.ADSzbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Araki, H., Progr. Theor. Phys., 1964, vol. 32, p. 844.ADSzbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Haag, R., Local Quantum Physics, Berlin, Heidelberg, New York: Springer-Verlag, 1996.zbMATHCrossRefGoogle Scholar
  10. 10.
    Brunetti, R., Fredenhagen, K., and Verch, R., Commun. Math. Phys., 2003, vol. 237, p. 31.ADSzbMATHMathSciNetGoogle Scholar
  11. 11.
    Arnold, V.I., Mathematical Methods of Classical Mechanics, Berlin: Springer, 1978; Moscow: URSS, 2003.zbMATHGoogle Scholar
  12. 12.
    Sanders, J.A., Aspects of Locally Covariant Quantum Field Theory, PhD Thesis, Univ. of York, 2008.Google Scholar
  13. 13.
    Bratteli, O. and Robinson, D.V., Operator Algebras and Quantum Statistical Mechanics, Berlin: Springer-Verlag, 1987.zbMATHGoogle Scholar
  14. 14.
    Dimok, J., Commun. Math. Phys., 1980, vol. 77, p. 219.ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2012

Authors and Affiliations

  • A. S. Sitdikov
    • 1
    Email author
  • A. A. Khamzin
    • 1
  • A. S. Nikitin
    • 1
  • S. Yu. Antonov
    • 1
  1. 1.Kazan State Power Engineering UniversityKazanRussia

Personalised recommendations