Advertisement

Spectrum of a superconducting tunnel detector in a simple spherical model of electron loss

  • M. G. KozinEmail author
  • I. L. Romashkina
Proceedings of the International Conference “Nucleus-2011” (The 61st International Conference on Nuclear Spectroscopy and the Structure of Atomic Nuclei)

Abstract

The loss in the initial stage of energy relaxation in the absorber of a superconducting tunnel detector is considered using a simple spherical model that describes the escape of a cloud of secondary electrons (formed upon relaxation of the primary excitations caused by X-ray absorption) from the absorber. The foundations of this model are justified. Three situations dependent on the ratio of the detector thickness L and electron range R leading to different types of spectra are examined. The position, amplitude, and width of the line recorded by the detector are determined as well.

Keywords

Absorber Thickness Incident Beam Energy Electron Range Thin Absorber Total Absorption Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Van Vechten, D. and Wood, K.S., Phys. Rev. B, 1991, vol. 43, p. 12852.ADSCrossRefGoogle Scholar
  2. 2.
    Kurakado, M., Nucl. Instrum. Methods Phys. Res., 1982, vol. 196, p. 275.ADSCrossRefGoogle Scholar
  3. 3.
    Kozorezov, A.G., et al., Phys. Rev. B, 2000, vol. 61, p. 11807.ADSCrossRefGoogle Scholar
  4. 4.
    Kozorezov, A.G., et al., Phys. Rev. B, 2008, vol. 77, 014501.ADSCrossRefGoogle Scholar
  5. 5.
    Zehnder, A., Phys. Rev. B, 1995, vol. 52, p. 12858.ADSCrossRefGoogle Scholar
  6. 6.
    Brink, P.L., Non-Equilibrium Superconductivity Induced by X-Ray Photons, Ph.D. Thesis, Oxford: Magdalen College, 1995.Google Scholar
  7. 7.
    Lerch, P. and Zehnder, A., Quantum Giaever Detectors: STJ’s, in Cryogenic Particle Detection, Enss, C., Ed., Berlin, Heidelberg: Springer, 2005, pp. 217–267.Google Scholar
  8. 8.
    Van Vechten, D. and Wood, K.S., IEEE Trans. Appl. Supercond., 1993, vol. 3, p. 2096.ADSCrossRefGoogle Scholar
  9. 9.
    Van Vechten, D., Blamire, M.G., Fritz, G.G., et al., J. Low Temp. Phys., 1993, vol. 93, p. 671.ADSCrossRefGoogle Scholar
  10. 10.
    Van Vechten, D., et al., IEEE Trans. Appl. Supercond., 1995, vol. 5, p. 3030.CrossRefGoogle Scholar
  11. 11.
    Ukibe, M., et al., Nucl. Instrum. Methods Phys. Res., Sect. A, 1998, vol. 402, p. 95.ADSCrossRefGoogle Scholar
  12. 12.
    Angloher, G., et al., J. Low Temp. Phys., 2001, vol. 123, no. 3/4, p. 165.CrossRefGoogle Scholar
  13. 13.
    Kozorezov, A.G., et al., Phys. Rev. B, 2007, vol. 75, 094513.ADSCrossRefGoogle Scholar
  14. 14.
    Kanaya, K. and Okayama, S., J. Phys. D: Appl. Phys., 1972, vol. 5, p. 43.ADSCrossRefGoogle Scholar
  15. 15.
    Luk’yanov, F.A., Rau, E.I., and Sennov, R.A., Bull. Russ. Acad. Sci. Phys., 2009, vol. 73, no. 4, p. 441.CrossRefGoogle Scholar
  16. 16.
    Bakaleinikov, L.A., et al., The Nucleus, 1997, vol. 34, p. 1.Google Scholar
  17. 17.
    Bakaleinikov, L.A., et al., Zh. Tekh. Fiz., 2001, vol. 71, p. 14.Google Scholar
  18. 18.
    Bakaleinikov, L.A., et al., Zh. Tekh. Fiz., 2002, vol. 72, p. 119.Google Scholar
  19. 19.
    Bakaleynikov, L.A., Flegontova, E.Yu., and Zolotoyabko, E., J. Electr. Spectr. Rel. Phenom., 2006, vol. 151, p. 97.CrossRefGoogle Scholar
  20. 20.
    Bateman, J.E., Nucl. Instr. Meth. Phys. Res. B, 2001, vol. 184, p. 478.ADSCrossRefGoogle Scholar
  21. 21.
    Erbil, A., et al., Phys. Rev. B, 1988, vol. 37, p. 2450.ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2012

Authors and Affiliations

  1. 1.Skobel’tsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations