Advertisement

The anisotropic phenomenon in the β decay of radioactive elements and in other processes in nature

  • Yu. A. BaurovEmail author
Proceedings of the International Conference “Nucleus-2011” (The 61st International Conference on Nuclear Spectroscopy and the Structure of Atomic Nuclei)
  • 39 Downloads

Abstract

Results from experimental studies of a new hypothetical interaction in nature based on analyzing fluctuations in the intensity of the β decay of radioactive elements are presented. One possible explanation of the results, based on a hypothesis as to the global anisotropy of physical space caused by the existence of cosmological vector potential \(\vec A_g \), is given. It is shown that vector \(\vec A_g \) has the following coordinates in the second equatorial coordinate system: right ascension α = 293° ± 10°; declination δ = 36° ± 10°.

Keywords

Radioactive Element Scintillation Detector Test Body Coanda Effect Anisotropic Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baurov, Yu.A., Babaev, Yu.N., and Ablekov, V.K., Dokl. Akad. Nauk SSSR, 1981, vol. 259, no. 5, p. 1080.Google Scholar
  2. 2.
    Baurov, Yu.A., Babaev, Yu.N., and Ablekov, V.K., Dokl. Akad. Nauk SSSR, 1982, vol. 262, no. 1, p. 68.ADSGoogle Scholar
  3. 3.
    Baurov, Yu.A., Babaev, Yu.N., and Ablekov, V.K., Dokl. Akad. Nauk SSSR, 1982, vol. 265, no. 5, p. 1108.Google Scholar
  4. 4.
    Babaev, Yu.N. and Baurov, Yu.A., On the Origin of Fundamental Constants and Some Quantum Numbers, Preprint of Institute for Nuclear Research of the USSR Academy of Sciences, 1984, no. P-0362.Google Scholar
  5. 5.
    Baurov, Yu.A., Klimenko, E.Yu., and Novikov, S.I., Dokl. Akad. Nauk SSSR, 1990, vol. 315, no. 5, p. 1116.ADSGoogle Scholar
  6. 6.
    Baurov, Yu.A. and Ryabov, P.M., Dokl. Akad. Nauk SSSR, 1992, vol. 326, no. 1, p. 73.Google Scholar
  7. 7.
    Baurov, Yu.A., Phys. Lett. A, 1993, vol. 181, p. 283.ADSCrossRefGoogle Scholar
  8. 8.
    Baurov, Yu.A. and Shutov, V.L., Prikl. Fiz., 1995, no. 1, p. 40.Google Scholar
  9. 9.
    Baurov, Yu.A., et al., Mod. Phys. Lett. A, 2001, vol. 16, no. 32, p. 2089.ADSCrossRefGoogle Scholar
  10. 10.
    Baurov, Yu.A., Struktura fizicheskogo prostranstva i novyi sposob polucheniya energii (teoriya, eksperiment, prikladnye voprosy) (Physical Space Structure and the New Way to Generate Energy (Theory, Experiment, Applied Problems)), Moscow: Krechet, 1998.Google Scholar
  11. 11.
    Baurov, Yu.A., Global Anisotropy of Physical Space. Experimental and Theoretical Basis, New York: Nova Sci., 2004.Google Scholar
  12. 12.
    Baurov, Yu.A., Sobolev Yu.G., Ryabov Yu.V., and Kushniruk V.F., Phys. At. Nucl., 2007, vol. 70, no. 11, p. 1825.CrossRefGoogle Scholar
  13. 13.
    Jenkins, J.H., et al., Astropart. Phys., 2009, vol. 32, no. 1, pp. 42–46.ADSCrossRefGoogle Scholar
  14. 14.
    Baurov, Yu.A. and Malov, I.F., Int. J. Pure Appl. Phys., 2010, vol. 6, no. 4, p. 469.Google Scholar
  15. 15.
    Baurov, Yu.A., et al., Phys. Lett. A, 2003, vol. 311, p. 512.ADSCrossRefGoogle Scholar
  16. 16.
    Malov, I.F. and Baurov, Yu.A., Astron. Rep., 2007, vol. 84, no. 10, p. 830.ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2012

Authors and Affiliations

  1. 1.Central Research Institute of Machine Building (TsNIIMASh)Korolev, Moscow oblastRussia

Personalised recommendations