Skip to main content
Log in

The Fano antiresonance effect in the current-voltage characteristics of a nanostructure with a single magnetic impurity

  • Proceedings of the International Symposium “Ordering in Minerals and Alloys” (OMA-14)
  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

A theoretical investigation is performed of quantum coherent electron transport through a nanostructure that contains an impurity ion with an uncompensated magnetic moment. It is shown that the transmission coefficient of spin-polarized electrons has the Fano antiresonance. This effect appears as a result of exchange interaction between the spin of transmitted electron and the spin of impurity ion. It is shown that Fano antiresonance leads to a qualitative modification of the current-voltage characteristic of the structure responsible for the large value of magnetoresistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cho, A.Y. and Arthur, J.R., Prog. Solid State Chem., 1975, vol. 10, p. 157.

    Article  Google Scholar 

  2. Kern, D.P., Springer Ser. Solid State Sci., 1993, vol. 111, p. 1.

    Google Scholar 

  3. Wiesendanger, R., Scanning Probe Microscopy and Spectroscopy, Cambridge: Univ. Press, 1994.

    Book  Google Scholar 

  4. Kish, L.B., Phys. Lett. A, 2002, vol. 305, p. 144.

    Article  ADS  Google Scholar 

  5. Buot, F.A., Phys. Rep., 1993, vol. 234, p. 73.

    Article  ADS  Google Scholar 

  6. Ando, T., Fowler, A.B., and Stern, F., Rev. Mod. Phys., 1982, vol. 54, p. 437.

    Article  ADS  Google Scholar 

  7. Weisbuch, C. and Vinter, B., Quantum Semiconductor Structures: Fundamentals and Applications, London: Acad. Press, 1991.

    Google Scholar 

  8. Agraït, N., Yeyatib, A.L., and van Ruitenbeek, J.M., Phys. Rep., 2003, vol. 377, p. 81.

    Article  ADS  Google Scholar 

  9. Seminario, J.M., Molecular and Nano Electronics: Analysis, Design and Simulation, Oxford: Elsevier, 2007.

    Google Scholar 

  10. Alhassid, Y., Rev. Mod. Phys., 2000, vol. 72, p. 895.

    Article  ADS  Google Scholar 

  11. van Kampen, N.G., Stochastic Processes in Physics and Chemistry, Amsterdam: North-Holland, 1981.

    MATH  Google Scholar 

  12. Akkermans, E., Montambaux, G., Pichard, J.-L., and Zinn-Justin, J., Mesoscopic Quantum Physics, Amsterdam: North-Holland, 1995.

    Google Scholar 

  13. Datta, S., Electronic Transport in Mesoscopic Systems, Cambridge: Univ. Press, 1995.

    Google Scholar 

  14. Keldysh, L.V., Zh. Eksp. Teor. Fiz., 1964, vol. 47, p. 1515.

    Google Scholar 

  15. Kadanoff, L.P. and Baym, G., Quantum Statistical Mechanics; Green’s Function Methods in Equilibrium and Nonequilibrium, New York: W.A. Benjamin, 1962.

    MATH  Google Scholar 

  16. Meir, Y. and Wingreen, N.S., Phys. Rev. Lett., 1992, vol. 68, p. 2512.

    Article  ADS  Google Scholar 

  17. Arseev, P.I. and Maslova, N.S., JETP Lett., 2007, vol. 85, no. 5, p. 251.

    Article  ADS  Google Scholar 

  18. Arseev, P.I. and Maslova, N.S., Usp. Fiz. Nauk, 2010, vol. 180, p. 1197.

    Article  Google Scholar 

  19. Tikhodeev, S.G. and Ueba, H., Phys. Rev. Lett., 2009, vol. 102, p. 246101.

    Article  ADS  Google Scholar 

  20. Datta, S., Quantum Transport: Atom to Transistor, Cambridge Univ. Press, 2005; Moscow-Izhevsk: NITs “Regulyarnaya i khaoticheskaya dinamika”, 2009.

  21. van Wees, B.J., van Houten, H., Beenakker, C.W.J., et al., Phys. Rev. Lett., 1988, vol. 60, p. 848; Wharham, D.A., Thornton, T.J., Newbury, R., et al., J. Phys. C, 1988, vol. 21, p. L209.

    Article  ADS  Google Scholar 

  22. Aharonov, Y. and Bohm, D., Phys. Rev., 1959, vol. 115, p. 485.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Fano, U., Phys. Rev., 1961, vol. 124, p. 1866.

    Article  ADS  MATH  Google Scholar 

  24. Gores, J., Goldhaber-Gordon, D., Heemeyer, S., et al., Phys. Rev. B, 2000, vol. 62, p. 2188.

    Article  ADS  Google Scholar 

  25. Aikawa, H., Kobayashi, K., Sano, A., et al., J. Phys. Soc. Jpn., 2004, vol. 73, p. 3235.

    Article  ADS  Google Scholar 

  26. Fert, A., Usp. Fiz. Nauk, 2008, vol. 178, p. 1336.

    Article  Google Scholar 

  27. Fraerman, A.A. and Udalov, O.G., JETP Lett., 2008, vol. 87, no. 3, p. 159.

    Article  ADS  Google Scholar 

  28. Karashtin, E.A., Udalov, O.G., and Fraerman, A.A., JETP, 2009, vol. 109, no. 6, p. 973.

    Article  ADS  Google Scholar 

  29. Akkerman, H.B. and de Boer, B., J. Phys.: Condens. Matter, 2008, vol. 20, p. 013001.

    Article  ADS  Google Scholar 

  30. Bogani, L. and Wernsdorfer, W., Nature Mater., 2008, vol. 7, p. 179.

    Article  ADS  Google Scholar 

  31. Tiron, R., Wernsdorfer, W., Foguet-Albiol, D., et al., Phys. Rev. Lett., 2003, vol. 91, p. 227203.

    Article  ADS  Google Scholar 

  32. Hirjibehedin, C.F., Lutz, C.P., and Heinrich, A.J., Science, 2006, vol. 312, p. 1021.

    Article  ADS  Google Scholar 

  33. Chen, X., Fu, Y.-S., Ji, S.-H., et al., Phys. Rev. Lett., 2008, vol. 101, p. 187208.

    ADS  Google Scholar 

  34. Loth, S., von Bergmann, K., and Ternes, M., Nature Phys., 2010, vol. 6, p. 340.

    Article  ADS  Google Scholar 

  35. Fernandez-Rossier, J., Phys. Rev. Lett., 2009, vol. 102, p. 256802.

    Article  ADS  Google Scholar 

  36. Hirjibehedin, C.F., Lin, C.-Y., Otte, A.F., et al., Science, 2007, vol. 317, p. 1199.

    Article  ADS  Google Scholar 

  37. Tsukahara, N., Noto, K., Ohara, M., et al., Phys. Rev. Lett., 2009, vol. 102, p. 167203.

    Article  ADS  Google Scholar 

  38. Val’kov, V.V. and Aksenov, S.V., Bull. Russ. Acad. Sci. Phys., 2010, vol. 74, no. 1, p. 1.

    Article  MATH  Google Scholar 

  39. Val’kov, V.V. and Aksenov, S.V., Bull. Russ. Acad. Sci. Phys., 2010, vol. 74, no. 5, p. 731.

    Article  MATH  Google Scholar 

  40. Bruus, H. and Flensberg, K., Many-Body Quantum Theory in Condensed Matter Physics: an Introduction, Copenhagen: Oxford Univ. Press, 2004.

    Google Scholar 

  41. Misiorny, M., Weymann, I., and Barnas, J., Phys. Rev. Lett., 2011, vol. 106, p. 126602.

    Article  ADS  Google Scholar 

  42. Zutic, I., Fabian, J., and Das Sarma, S., Rev. Mod. Phys., 2004, vol. 76, p. 323.

    Article  ADS  Google Scholar 

  43. Val’kov, V.V. and Aksenov, S.V., JETP, 2011, vol. 113, no. 2, p. 266.

    Article  ADS  Google Scholar 

  44. Val’kov, V.V. and Aksenov, S.V., arXiv:1109.0391v1.2011.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Val’kov.

Additional information

Original Russian Text © V.V. Val’kov, S.V. Aksenov, E.A. Ulanov, 2012, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2012, Vol. 76, No. 3, pp. 411–416.

About this article

Cite this article

Val’kov, V.V., Aksenov, S.V. & Ulanov, E.A. The Fano antiresonance effect in the current-voltage characteristics of a nanostructure with a single magnetic impurity. Bull. Russ. Acad. Sci. Phys. 76, 362–367 (2012). https://doi.org/10.3103/S1062873812030379

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873812030379

Keywords

Navigation