Numerical modeling of the action of pulse laser radiation on small absorbing targets

  • O. G. RomanovEmail author
  • G. I. Zheltov
  • G. S. Romanov
Proceedings of the XII All-Russia Seminar “The Wave Phenomena in Inhomogeneous Media”


The features of acoustic wave generation in a dense medium due to the absorption of laser pulse radiation were analyzed numerically, based on solutions to the equations of motion in Lagrange form. The influence of thermal and acoustic mechanisms in changes of physical parameters in a dense medium was studied over a wide range of temporal and energetic characteristics typical of laser systems.


Cavitation Laser Pulse Radiation Heat Transfer Equation Extension Strain Acoustic Wave Generation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rockwell, B.A., Thomas, R.J., and Vogel, A., Med. Laser Appl., 2010, vol. 25, p. 84.CrossRefGoogle Scholar
  2. 2.
    Hosokawa, Y., Takabayashi, H., Muira, S., et al., Appl. Phys. A, 2004, vol. 79, p. 795.ADSCrossRefGoogle Scholar
  3. 3.
    Vogel, A., Noack, J., Huettman, G., and Paltauf, G., Appl. Phys. B, 2005, vol. 81, p. 1015.ADSCrossRefGoogle Scholar
  4. 4.
    Paltauf, G. and Schmidt-Kloiber, H., Appl. Phys. A, 1999, vol. 68, p. 525.ADSCrossRefGoogle Scholar
  5. 5.
    Till, S.J., Milsom, P.K., and Rowlands, G., Bull. Math. Biol., 2004, vol. 66, p. 791.CrossRefGoogle Scholar
  6. 6.
    Pustovalov, V.K. and Jean, B., Laser Phys., 2006, vol. 7, no. 7, p. 1011.ADSCrossRefGoogle Scholar
  7. 7.
    Lazare, S., Bonneau, R., Gaspard, S., et al., Appl. Phys. A, 2009, vol. 94, p. 719.ADSCrossRefGoogle Scholar
  8. 8.
    Zheltov, G.I., Vitkin, E.I., and Rubanov, A.S., J. Appl. Spectrosc., 2002, vol. 69, no. 4, p. 626.CrossRefGoogle Scholar
  9. 9.
    Lyamishev, L.M., Lazernoe termoopticheskoe vozbuzhdenie zvuka (Laser Thermooptical Excitation of Sound), Moscow: Nauka, 1989.Google Scholar
  10. 10.
    Zel’dovich, Ya.B. and Raizer, Yu.P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii (Physics of Shock Waves and High Temperature Hydrodynamic Phenomena), Moscow: Nauka, 1966.Google Scholar
  11. 11.
    Kanel’, G.I., Razorenov, S.V., Utkin, A.V., and Fortov, V.E., Udarno-volnovye yavleniya v kondensirovannykh sredakh (Shock-Wave Phenomena in Condensed Mediums), Moscow: Yanus-K, 1996.Google Scholar
  12. 12.
    Richtmayer, R.D. and Morton, K.W., Difference Methods for Initial-Value Problems, New York: Intersci. Publ. div. John Wiley and Sons, 1967.Google Scholar
  13. 13.
    Saul’ev, V.K., Integrirovanie uravnenii parabolicheskogo tipa metodom setok (Parabolic Equations Integration by Net Methods), Moscow: Fizmatlit, 1960.Google Scholar
  14. 14.
    Vogel, A., Linz, N., Freidank, S., and Paltauf, G, Phys. Rev. Lett., 2008, vol. 100, p. 038102.ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2010

Authors and Affiliations

  • O. G. Romanov
    • 1
    Email author
  • G. I. Zheltov
    • 2
  • G. S. Romanov
    • 3
  1. 1.Belarus State UniversityMinskBelarus
  2. 2.Institute of PhysicsNational Academy of SciencesMinskBelarus
  3. 3.Heat- and Mass-transfer InstituteMinskBelarus

Personalised recommendations