Skip to main content
Log in

Slow decoherence and the radiative decay limit in rare-earth-doped crystals for coherent optical storage

  • Proceedings of the IX International Symposium on Photon Echo and Coherent Spectroscopy (Kazan, October 26–31, 2009)
  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

We analyze the material requirements for recording, storage, and processing of optically encoded information using coherent optical transients in resonant solids. We introduce new figures of merit (FOM’s) that explicitly account for the ratio between the rate of the decoherence and the rate of the spontaneous radiative decay. Highest FOM values are achieved when the decoherence rate approaches the fundamental limit set by spontaneous emission under the condition that the total transition oscillator strength is concentrated between a single pair of energy levels. We analyze FOM’s of some of the most promising rare-earth-doped crystals at cryogenic temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Renn, A., Wild, U.P., and Rebane, A., J. Phys. Chem., 2002, vol. 106, p. 3045.

    Google Scholar 

  2. Kawazoe, T. and Masumoto, Y., Jpn. J. Appl. Phys., 1998, vol. 37, p. L394.

    Article  ADS  Google Scholar 

  3. Waldermann, F.C., Olivero, P., Nunn, J., et al., Diamond Relat. Mater., 2007, vol. 16, p. 1887.

    Article  Google Scholar 

  4. Mitsunaga, M., Opt. Quantum Electron., 1992, vol. 24, p. 1137.

    Article  Google Scholar 

  5. Macfarlane, R.M and Shelby, R.M, in Spectroscopy of Solids containing Rare Earth Ions, Kaplyanskii, A.A. and Macfarlane, R.M., Eds., Amsterdam: North-Holland, 1987.

    Google Scholar 

  6. Sun, Y., Spectroscopic Properties of Rare Earths in Optical Materials, Springer Ser. in Mater. Sci., Liu, G.K. and Jacquier, B., Eds., Berlin, Heidelberg, New York: Springer, 2005, Ch. 7.

    Google Scholar 

  7. Macfarlane, R.M., J. Luminescence, 2002, vol. 100, p. 1.

    Article  ADS  Google Scholar 

  8. Equall, R.W., Sun, Y., Cone, R.L., and Macfarlane, R.M., Phys. Rev. Lett., 1994, vol. 72, p. 2179.

    Article  ADS  Google Scholar 

  9. Sun, Y., Thiel, C.W., Cone, R.L., et al., J. Lumin., 2002, vol. 98, p. 281.

    Article  Google Scholar 

  10. Böttger, T., Thiel, C.W., Cone, R.L., and Sun, Y., Phys. Rev. B, 2009, vol. 79, p. 115104.

    Article  ADS  Google Scholar 

  11. Fraval, E., Sellars, M.J., and Longdell, J.J., Phys. Rev. Lett., 2004, vol. 92, p. 077601.

    Article  ADS  Google Scholar 

  12. Macfarlane, R.M., J. Lumin., 2007, vol. 125, p. 156.

    Article  Google Scholar 

  13. Alexander, A.L., Longdell, J.J., Sellars, M.J., and Manson, N.B., Phys. Rev. Lett., 2006, vol. 96, p. 043602.

    Article  ADS  Google Scholar 

  14. Ilchenko, V.S., Savchenkov, A.A., Matsko, A.B., and Maleki, L., J. Opt. Soc. Am. B, 2003, vol. 20, no. 2, p. 33 CL 02-08359.

    Article  MathSciNet  Google Scholar 

  15. McAuslan, D.L., Longdell, J.J., and Sellars, M.J., Phys. Rev. A, 2009, vol. 80, p. 062307.

    Article  ADS  Google Scholar 

  16. Lvovsky, A.I., Sanders, B.C., and Tittel, W., Nature Photon., 2009, vol. 3, p. 706.

    Article  ADS  Google Scholar 

  17. Tittel, W., Afzelius, M., Chaneliére, T., et al., Laser Photon. Rev., 2010, vol. 4, p. 244.

    Article  Google Scholar 

  18. Gaebel, T., Domhan, M., Popa, I., et al., Nature Phys., 2006, vol. 2, p. 408.

    Article  ADS  Google Scholar 

  19. Jackson, J.D., Classical Elecrodynamics, 3rd ed., New York: Wiley, 1998.

    Google Scholar 

  20. Mitsunaga, M., Yano, R., and Uesugi, N., Opt. Lett., 1991, vol. 16, p. 1890.

    Article  ADS  Google Scholar 

  21. Dicke, R., Phys. Rev., 1954, vol. 93, p. 99.

    Article  MATH  ADS  Google Scholar 

  22. Brandes, T., Phys. Rep., 2005, vol. 408, p. 315.

    Article  ADS  Google Scholar 

  23. Rebane, K.K., Impurity Spectra of Solids, Oxford: Plenum, 1970.

    Google Scholar 

  24. Van Vleck, J.H., J. Chem. Phys., 1937, vol. 41, p. 67.

    Article  Google Scholar 

  25. Dieke, G.H. and Crosswhite, H.M., Appl. Opt., 1963, vol. 2, p. 675.

    Article  ADS  Google Scholar 

  26. Macfarlane, R.M. and Shelby, R.M., Opt. Commun., 1982, vol. 42, p. 346.

    Article  ADS  Google Scholar 

  27. Böttger, T., Thiel, C.W., Sun, Y., and Cone, R.L., Phys. Rev. B, 2006, vol. 73, p. 075101.

    Article  ADS  Google Scholar 

  28. Stoneham, A.M., Rev. Mod. Phys., 1969, vol. 41, p. 82.

    Article  ADS  Google Scholar 

  29. Sun, Y., Wang, G.M., Cone, R.L., et al., Phys. Rev. B, 2000, vol. 62, p. 15443.

    Article  ADS  Google Scholar 

  30. Macfarlane, R.M., Cassanho, A., and Meltzer, R.S., Phys. Rev. Lett., 1992, vol. 69, p. 542.

    Article  ADS  Google Scholar 

  31. Chukalina, E.P., Popova, M.N., Korableva, S.L., and Abdulsabirov, R.Yu., Phys. Lett. A, 2000, vol. 269, p. 348.

    Article  ADS  Google Scholar 

  32. Karaiskaj, D., Thewalt, M.L.W., Ruf, T., et al., Phys. Rev. Lett., 2001, vol. 86, p. 6010.

    Article  ADS  Google Scholar 

  33. Thiel, C.W., Sun, Y., Böttger, T., et al., J. Lumin., 2010, in press.

  34. Thiel, C.W., Macfarlane, R.M., Böttger, T., et al., J. Lumin., 2010, in press.

  35. Malovichko, G., Grachev, V., and Schirmer, O., Appl. Phys. B, 1999, vol. 68, p. 785.

    Article  ADS  Google Scholar 

  36. Gerhardt, J., Wrigge, G., Agio, P.M., et al., Opt. Lett., 2007, vol. 32, p. 1420.

    Article  ADS  Google Scholar 

  37. Wrigge, G., Gerhardt, I., Hwang, J., et al., Nature Phys., 2008, vol. 4, p. 6.

    Article  Google Scholar 

  38. Gerhardt, J., Wrigge, G., Bushev, P., et al., Phys. Rev. Lett., 2008, vol. 98, p. 033601.

    Article  ADS  Google Scholar 

  39. Xu, X., Bo, Sun., Berman, P.R., et al., Science, 2007, vol. 317, p. 929.

    Article  ADS  Google Scholar 

  40. Mims, W.B., Phys. Rev., 1968, vol. 168, p. 370.

    Article  ADS  Google Scholar 

  41. Ganem, J., Wang, Y.P., Boye, D., et al., Phys. Rev. Lett., 1991, vol. 66, p. 695.

    Article  ADS  Google Scholar 

  42. Kalachev, A. and Kröll, S., Phys. Rev. A, 2006, vol. 74, p. 023814.

    Article  ADS  Google Scholar 

  43. Karasik, R.I., Marzlin, K.-P., Sanders, B.C., and Whaley, K.B., Phys. Rev. A, 2008, vol. 77, p. 052301.

    Article  ADS  Google Scholar 

  44. Brooke, P.G., Phys. Rev. A, 2007, vol. 75, p. 022320.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Rebane.

Additional information

Original Russian Text © A.K. Rebane, C.W. Thiel, R.K. Mohan, R.L. Cone, 2010, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2010, Vol. 74, No. 7, pp. 934–942.

The article is published in the original.

About this article

Cite this article

Rebane, A.K., Thiel, C.W., Mohan, R.K. et al. Slow decoherence and the radiative decay limit in rare-earth-doped crystals for coherent optical storage. Bull. Russ. Acad. Sci. Phys. 74, 891–900 (2010). https://doi.org/10.3103/S1062873810070014

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873810070014

Keywords

Navigation