Nonlinear conductivity of single-walled zigzag carbon nanotubes

  • M. B. BelonenkoEmail author
  • S. Yu. Glazov
  • N. E. Meshcheryakova
Proceedings of the XII All-Russia Seminar “Physics and Application of Microwaves”


The conductivity of the single-walled zigzag carbon nanotube system was studied in an alternating electric field with the intensity vector along the axis of nanotubes. The electronic carbon nanotube system was macroscopically considered in terms of the Boltzmann kinetic equation in the constant relaxation time approximation while omitting the interaction with the phonon subsystem. The nonlinear responses to the applied harmonic field were calculated and analyzed.


Harmonic Amplitude Order Root Boltzmann Kinetic Equation Phonon Subsystem Nonlinear Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dresselhaus, M.S., Dresselhaus, G., and Eklund, P.C., Science of Fullerenes and Carbon Nanotubes, New York: Acad. Press, Inc., 1996.Google Scholar
  2. 2.
    Ivanovskii, A.L., Kvantovaya khimiya v materialovedenii. Nanotubulyarnye formy veshchestva, (Quantum Chemistry in Material Science. Nanotubular Substance Forms), Yekaterinburg: UrO RAS, 1999.Google Scholar
  3. 3.
    Maksimenko, S.A. and Slepyan, G.Ya., Handbook on Nanotechnology. Nanometer Structure: Theory, Modeling, and Simulation, Bellingham: SPIE press, 2004, p. 145.Google Scholar
  4. 4.
    Eletskii, A.V., Nature-Nanotechnology, 2006, vol. 1, p. 36.CrossRefGoogle Scholar
  5. 5.
    Xiangwu Zhang, Adv. Mater., 2008, vol. 20,issue 21, p. 4140.Google Scholar
  6. 6.
    Ivanchenko, G.S. and Lebedev, N.G., Fiz. Tverd. Tela, 2007, vol. 49,issue 1, p. 183 [Phys. Solid State (Engl. Transl.), 2007, vol. 49, no. 1, p. 189].Google Scholar
  7. 7.
    Maksimenko, A.S. and Slepyan, G.Ya., Phys. Rev. Lett., 2000, vol. 84, no. 2, p. 362.CrossRefADSGoogle Scholar
  8. 8.
    Belonenko, M.B., Demushkina, E.V., and Lebedev, N.G., Khim. Fiz., 2006, vol. 25, no. 7, p. 83.Google Scholar
  9. 9.
    Belonenko, M.B., Demushkina, E.V., and Lebedev, N.G., Izv. Akad. Nauk. Ser. Fiz., 2007, vol. 71, no. 1, p. 140 [Bull. Russian Acad. Sci.: Phys. (Engl. Transl.), 2007, vol. 71, no. 1, p. 134].Google Scholar
  10. 10.
    Yevtushenko, O.M., Slepyan, G.Ya., and Maksimenko, S.A., Phys. Rev. Lett., 1997, vol. 79, no. 6, p. 1102.CrossRefADSGoogle Scholar
  11. 11.
    Harris, P., Uglerodnye nanotruby i rodstvennye struktury. Novye materialy XXI veka, (Carbon Nanotubes and Related Structures. New Materials of XXI Century), Moscow: Tekhnosfera, 2003.Google Scholar
  12. 12.
    Kryuchkov, S.V., Poluprovodnikovye sverkhreshetki v sil’nykh polyakh (Semiconductor’s Superlattices in Strong Fields), Volgograd: Peremena, 1992.Google Scholar
  13. 13.
    Belonenko, M.B., Demushkina, E.V., and Lebedev, N.G., Fiz. Tverd. Tela, 2008, vol. 50,issue 2, p. 368 [Phys. Solid State (Engl. Transl.), 2008, vol. 50, no. 2, p. 383].Google Scholar
  14. 14.
    Bass, F.G., Bulgakov, A.A., and Tetervov, A.P., Vysokochastotnye svoistva poluprovodnikov so sverkhereshetkami (High-Frequency Properties of Semiconductors with Superlattices), Moscow: Nauka, 1989.Google Scholar

Copyright information

© Allerton Press, Inc. 2009

Authors and Affiliations

  • M. B. Belonenko
    • 1
    Email author
  • S. Yu. Glazov
    • 2
  • N. E. Meshcheryakova
    • 1
  1. 1.Volgograd Business InstituteVolgogradRussia
  2. 2.Volgograd State Pedagogical UniversityVolgogradRussia

Personalised recommendations