Skip to main content
Log in

Brittle nanomaterials: Hardness and superplasticity

  • Proceedings of the V International Conference “Phase Transformations and Strength of Crystals”
  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The data on the hardness and superplasticity of nanomaterials based on brittle high-melting point compounds such as carbides, nitrides, borides, intermetallics, and oxides are analyzed. The nonmonotonic change in the hardness with a change in the nanolayer thickness in multilayer films and the grain size in bulk nanomaterials is discussed. The fracture of these materials has intercrystalline character. However, residual plastic deformation is observed in some cases, for example, in for nanocolumnar TiN coatings and SiC single-crystal nanowire. The nanostructured approach was very successful in the development of nanocomposites with high-strain-rate superplasticity (∼10−2 s−1, T = 1400°C). The poorly investigated problems are pointed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrievski, R.A. and Ragulya, A.V., Nanostrukturnye materialy (Nanostructured Materials), Moscow: Akademiya, 2005.

    Google Scholar 

  2. Gutkin, M.Yu. and Ovid’ko, I.A., Fizicheskaya mekhanika deformiruemykh nanostruktur, Vol. I. Nanokristallicheskie materialy (Physical Mechanics of Deformed Nanostructures. Vol. I: Nanocrystalline Materials), St. Petersburg: Yanus, 2003.

    Google Scholar 

  3. Meyers, M.A., Mishra, A., and Benson, D., Prog. Mater. Sci., 2006, vol. 51, no. 4, p. 427.

    Article  Google Scholar 

  4. Valiev, R.Z. and Aleksandrov, I.V., Ob’emnye nanostrukturnye metallicheskie materialy (Bulk Nanostructured Metallic Materials), Moscow: Akademkniga, 2007.

    Google Scholar 

  5. Knotek, O., Breidenbach, R., Jungblat, F., and Loffler, F., Surf. Coat. Technol., 1990, vol. 43/44, no. 1, p. 107.

    Article  Google Scholar 

  6. Mitterer, C., Rauter, M., and Rodhammer, P., Surf. Coat. Technol., 1990, vol. 41, no. 3, p. 351.

    Article  Google Scholar 

  7. Veprek, S., Plasma Chem. Plasma Process., 1992, vol. 12, no. 3, p. 219.

    Article  Google Scholar 

  8. Helmerson, U., Todorova, S., Barnett, S.A., et al., J. Apll. Phys., 1987, vol. 62, no. 2, p. 481.

    Article  ADS  Google Scholar 

  9. Andrievski, R.A., Anisimova, I.P., and Anisimov, V.P., Thin Solid Films, 1991, vol. 205, no. 2, p. 171.

    Article  ADS  Google Scholar 

  10. Andrievski, R.A., Anisimova, I.P., and Anisimov, V., Fiz. Khim. Obrab. Mater., 1992, no. 2, p. 99.

  11. Shinn, M., Hultman, L., and Barnett, S.A., J. Mater. Res., 1992, vol. 7, no. 4, p. 901.

    Article  ADS  Google Scholar 

  12. Dubrovinskaia, N., Solozhenko, V.L., Miyajima, N., et al., Appl. Phys. Lett., 2007, vol. 90, no. 10, 101 912.

  13. Andrievski, R.A., Functional Gradient Materials and Surface Layers Prepared by Fine Particles Technology, Baraton, M.I. and Uvarova, I., Eds., Dordrecht: Kluwer, 2002, p. 17.

    Google Scholar 

  14. Andrievski, R.A. and Spivak, I.I., Prochnost’ tugoplavkikh soedinenii i materialov na ikh osnove (Strength of Refractory Compounds and Materials on Their Basis), Chelyabinsk: Metallurgiya, 1989.

    Google Scholar 

  15. Ovid’ko, I.A. and Sheinerman, A.G., Fiz. Tverd. Tela, 2008, vol. 50, no. 6, p. 1002 [Phys. Solid State (Engl. Transl.), vol. 50, no. 6, p. 1044].

    Google Scholar 

  16. Morozov, N.F., Ovid’ko, I.A., Petrov, Yu.V., and Sheinerman, A.G., Dokl. Ross. Akad. Nauk, 2006, vol. 406, no. 4, p. 480.

    Google Scholar 

  17. Ma, K.J. and Bloyce, A., Surf. Eng., 1995, vol. 11, no. 2, p. 71.

    Google Scholar 

  18. Andrievski, R.A., Kalinnikov, G.V., and Shtanskii, D.V., Fiz. Tverd. Tela, 2000, vol. 42, no. 4, p. 741 [Phys. Solid State (Engl. Transl.), vol. 42, no. 4, p. 760].

    Google Scholar 

  19. Han, X.D., Zhang, Y.F., Zheng, K., et al., Nanoletters, 2007, vol. 7, no. 2, p. 452.

    ADS  Google Scholar 

  20. Zhang, Y., Han, X., Zheng, K., et al., Adv. Funct. Mater., 2007, vol. 17, no. 17, p. 3435.

    Article  Google Scholar 

  21. Szlufarska, I., Nakano, A., and Vashishta, P., Science, 2005, vol. 309, no. 5736, p. 911.

    Article  ADS  Google Scholar 

  22. Andrievski, R.A., Spivak, I.I., and Klimenko, V.V., Dokl. Akad. Nauk SSSR, 1972, vol. 203, no. 6, p. 1279.

    Google Scholar 

  23. Nieh, T.G., Wadsworth, J., and Wakai, F., Int. Mater. Rev., 1991, vol. 36, no. 2, p. 146.

    Google Scholar 

  24. Andrievski, R.A., Ivannikov, V.T., and Urbanovich, V.S., Key Eng. Mater., 1994, vols. 89–91, p. 445.

    Google Scholar 

  25. Hiraga, K., Kim, B.-N., Morita, K., et al., Sci. Technol. Adv. Mater., 2007, vol. 8, no. 4, p. 578.

    Article  Google Scholar 

  26. McFadden, S.X., Mishra, R.S., Valiev, R.Z., et al., Nature, 1999, vol. 398, p. 684.

    Article  ADS  Google Scholar 

  27. Zhou, X., Hulbert, D.M., Kuntz, J.D., et al., Mater. Sci. Eng. A, 2005, vol. 394, no. 2, p. 353.

    Article  Google Scholar 

  28. Xu, X., Nishmura, T., Hirosaki, N., et al., Acta Mater., 2006, vol. 54, no. 2, p. 255.

    Article  Google Scholar 

  29. Huang, Q., Bando, Y., Xu, X., et al., Nanotechnology, 2007, vol. 18, no. 48, 485 706.

  30. Hulbert, D.M., Jiang, D., Kuntz, J.D., et al., Scr. Mater., 2007, vol. 56, no. 12, p. 1103.

    Article  Google Scholar 

  31. Valiev, R.Z., Song, C., McFadden, S.X., et al., Philos. Mag. A, 2001, vol. 81, no. 1, p. 25.

    Article  ADS  Google Scholar 

  32. Andrievski, R.A., Zh. Vses. Khim. O-va im. D. I. Mendeleeva, 1991, vol. 36, no. 2, p. 137.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Andrievski.

Additional information

Original Russian Text © R.A. Andrievski, 2009, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2009, Vol. 73, No. 9, pp. 1290–1294.

About this article

Cite this article

Andrievski, R.A. Brittle nanomaterials: Hardness and superplasticity. Bull. Russ. Acad. Sci. Phys. 73, 1222–1226 (2009). https://doi.org/10.3103/S106287380909010X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106287380909010X

Keywords

Navigation