Skip to main content
Log in

Depth range of primary electrons, electron beam broadening, and spatial resolution in electron-beam studies

  • Proceedings of the XXII Russian Conference on Electron Microscopy EM-2008
  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

A comparative analysis of the electron range in solids as a function of the initial electron energy (in the range 1–50 keV) and parameters of matter is performed. A relationship between the full length range of electrons and the depth of their penetration into the target material is established using simple empirical relations. The broadening of an electron beam upon its penetration into a material is considered and the spatial resolution of electron-beam instruments (in particular, in the backscattering mode) is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Practical Scanning Electron Microscopy, Goldstein, J. and Yakowitz, H., Eds., New York: Plenum, 1975.

    Google Scholar 

  2. Bethe, H.A., Ann. Phys., 1930, vol. 5, p. 325.

    Article  Google Scholar 

  3. Williamson, W., Antolak, A.J., and Meredith, R.J., J. Appl. Phys., 1987, vol. 61, p. 4612.

    Article  ADS  Google Scholar 

  4. Afonin, V.P. and Lebed’, V.I., Metod Monte-Karlo v rentgenospektral’nom analize (Monte Carlo Method in X-ray Spectral Analysis), Novosibirsk: Nauka, 1989.

    Google Scholar 

  5. Reimer, L., Image Formation in Low-Voltage Scanning Electron Microscopy, Washington: SPIE Press, 1993.

    Google Scholar 

  6. Kanaya, K. and Okayama, S., J. Phys. D, 1972, vol. 5, p. 43.

    Article  ADS  Google Scholar 

  7. Cosslett, V.E. and Thomas, R.N., Brit. J. Appl. Phys., 1964, vol. 15, p. 1283.

    Article  ADS  Google Scholar 

  8. Fitting, H.-J., Phys. Status Solidi A, 1974, vol. 26, p. 525.

    Article  ADS  Google Scholar 

  9. Grun, A.E., Z. Naturforsch. A, 1957, vol. 12, no. 7, p. 89.

    ADS  Google Scholar 

  10. Everhart, T.E. and Hoff, P.A., J. Appl. Phys., 1971, vol. 42, no. 13, p. 5837.

    Article  ADS  Google Scholar 

  11. Matsukawa, T., Shimizu, R., Harada, K., and Kato, T., J. Appl. Phys., 1974, vol. 45, p. 733.

    Article  ADS  Google Scholar 

  12. Wittry, D.B. and Kyser, D.F., J. Appl. Phys., 1967, vol. 38, p. 375.

    Article  ADS  Google Scholar 

  13. Luke, K.L., J. Appl. Phys., 1994, vol. 76, no. 2, p. 1081.

    Article  ADS  Google Scholar 

  14. Kurniawan, O. and Ong, V.K.S., Scanning, 2007, vol. 29, p. 280.

    Article  Google Scholar 

  15. Tomlin, S.G., Proc. Phys. Soc., 1963, vol. 82, p. 465.

    Article  Google Scholar 

  16. Goldstein, J., Costley, J., Lorimer, G., and Reed, J., in Proc. X SEM Symp., Hare, O., Ed., Chicago, 1977, vol. 1, p. 315.

  17. Gignac, L.M., Kawasaki, M., Boettcher, S., and Wells, O.C., J. Appl. Phys., 2005, vol. 97, 114 506.

  18. Rau, E.I., Savin, V.O., and Sennov, R.A., Poverkhnost, 2000, no. 12, p. 4.

  19. Nosker, R.W., J. Appl. Phys., 1969, vol. 40, no. 4, p. 1872.

    Article  ADS  Google Scholar 

  20. Cosslett, V.E. and Thomas, R.N., Brit. J. Appl. Phys., 1964, vol. 15, p. 883.

    Article  ADS  Google Scholar 

  21. Klein, P., Andrae, M., Rohrbacher, K., and Wernisch, J., Scanning, 1996, vol. 18, p. 417.

    Article  Google Scholar 

  22. Aristov, V.V., Dremova, N.N., and Rau, E.I., Zh. Tekh. Fiz., 1996, vol. 6, no. 10, p. 172.

    Google Scholar 

  23. Niedrig, H. and Rau, E.I., Nucl. Instrum. Methods Phys. Res., 1998, vol. 142, p. 523.

    Article  ADS  Google Scholar 

  24. Bishop, H.E., Proc. Phys. Soc., 1965, vol. 85, p. 855.

    Article  Google Scholar 

  25. Drescher, H., Reimer, L., and Seidel, H., Z. Angew. Phys., 1970, vol. 29, p. 331.

    Google Scholar 

  26. Rau, E.I. and Sennov, R.A., Izv. Ross. Akad. Nauk, Ser. Fiz., 2004, vol. 68, no. 9, p. 1342.

    Google Scholar 

  27. Mikheev, N.N., Petrov, V.I., and Stepovich, M.A., Izv. Akad. Nauk SSSR, Ser. Fiz., 1991, vol. 55, p. 1474.

    ADS  Google Scholar 

  28. Kanaya, K. and Ono, H., J. Phys. D, 1978, vol. 11, p. 1495.

    Article  ADS  Google Scholar 

  29. Yasuda, M., Suzuki, Y., Kawata, H., and Hirai, Y., Jap. J. Appl. Phys. B, 2005, vol. 44, no. 7, p. 5515.

    Article  ADS  Google Scholar 

  30. Wells, O., Appl. Phys. Lett., 1971, vol. 19, p. 232.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Rau.

Additional information

Original Russian Text © F.A. Lukiyanov, E.I. Rau, R.A. Sennov, 2009, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2009, Vol. 73, No. 4, pp. 463–472.

About this article

Cite this article

Lukiyanov, F.A., Rau, E.I. & Sennov, R.A. Depth range of primary electrons, electron beam broadening, and spatial resolution in electron-beam studies. Bull. Russ. Acad. Sci. Phys. 73, 441–449 (2009). https://doi.org/10.3103/S1062873809040029

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873809040029

Keywords

Navigation