Diffraction of IR radiation by ultrasound in tellurium single crystals

  • G. A. Knyazev
  • V. B. VoloshinovEmail author
Proceedings of the XI All-Russia Seminar “Wave Phenomena in Inhomogeneous Media”


The optic, acoustic, and acousto-optic properties of tellurium single crystals are considered to analyze the possibilities of applying this material in acousto-optic filters to control mid- and far-IR radiation. The results of measuring the optic and acousto-optic parameters of a tellurium crystal are reported. The isotropic and anisotropic light diffraction by ultrasound in the crystal is investigated. The wide-aperture geometry of interaction in tellurium is implemented and an acousto-optic figure of merit M 2 of a tellurium crystal exceeding 10 × 10−15 s3 g−1 is experimentally obtained.


Tellurium Ultrasonic Power Extraordinary Wave Ultrasound Propagation Anisotropic Diffraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Balakshii, V.I., Parygin, V.N., and Chirkov, L.E., Fizicheskie osnovy akustooptiki (Physical Principles of Acousto-Optics), Moscow: Radio i Svyaz’, 1985.Google Scholar
  2. 2.
    Sil’vestrova, I.M., Barta, Ch., Dobrzhanskii, G.F., et al., Kristallografiy, 1975, vol. 20, p. 1062.Google Scholar
  3. 3.
    Feichtner, J.D., Gottlieb, M., and Conroy, J.J., Appl. Phys. Lett., 1979, vol. 34, no. 1, p. 1.CrossRefADSGoogle Scholar
  4. 4.
    Gottlieb, M., Goutzoulis, A., and Singh, N., Opt. Eng., 1992, vol. 31, no. 10, p. 2110.CrossRefADSGoogle Scholar
  5. 5.
    Suhre, D., Taylor, L., and Melamed, N., Opt. Eng., 1992, vol. 31, no. 10, p. 2118.CrossRefADSGoogle Scholar
  6. 6.
    Suhre, D. and Villa, E., Appl. Opt., 1998, vol. 37, no. 12, p. 2340.CrossRefADSGoogle Scholar
  7. 7.
    Oliveira, J. and Adler, E., IEEE Trans. Ultrasonics, Ferroelectrics, Freq Control, 1987, vol. UFFC-34, no. 1, p. 86.CrossRefGoogle Scholar
  8. 8.
    Balakshii, V.I., Voloshinov, V.B., Kulakova, L.A., and Knyazev, G.A., Zh. Tekh. Fiz., 2008, vol. 105, p. 118.Google Scholar
  9. 9.
    Caldwell, R.S. and Fan, H.Y., Phys. Rev., 1959, vol. 114, no. 3, p. 664.CrossRefADSGoogle Scholar
  10. 10.
    Fukuda, S., Shiosaki, T., and Kawabata, A., J. Appl. Phys., 1979, vol. 50, no. 6, p. 3899.CrossRefADSGoogle Scholar
  11. 11.
    Souilhac, D., Billeret, D., and Gundjian, A., Appl. Opt., 1989, vol. 28, no. 18, p. 3993.ADSCrossRefGoogle Scholar
  12. 12.
    Souilhac, D., Billerey, D., and Gundjan, A., Appl. Opt., 1990, vol. 29, no. 13, p. 1798.ADSGoogle Scholar
  13. 13.
    Souilhac, D. and Billerey, D., Proc. SPIE, 1993, vol. 2312, p. 212.CrossRefADSGoogle Scholar
  14. 14.
    Fjeldly, T.A. and Richter, W., Phys. Status Solidi (b), 1975, vol. 72, no. 2, p. 555.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2008

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations