Advertisement

Compression dynamics for phase-modulated few-cycle pulses

  • O. I. Paseka
  • V. E. Lobanov
  • A. P. SukhorukovEmail author
Proceedings of the XI All-Russia Seminar “Wave Phenomena in Inhomogeneous Media”
  • 25 Downloads

Abstract

A theory of compression of short optical pulses with quadratic phase modulation in a dispersive medium has been developed. The results of numerical simulation of the equation for the light wave field are reported. The conditions are found at which a pulse is compressed to one oscillation period. The optimal phase modulation index providing the maximum pulse compression is estimated.

Keywords

Modulation Index Compression Dynamics Pulse Compression Gaussian Pulse Dispersion Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Herrmann, J. and Wilhelmi, B., Laser für Ultrakurze Lichtimpulse, Berlin: Akademie, 1984.Google Scholar
  2. 2.
    Baltuska, A., Wei, Z., et al., Opt. Lett., 1997, vol. 22, p. 102.CrossRefADSGoogle Scholar
  3. 3.
    Beddard, T. and Ebrahimzadeh, M., Opt. Lett., 2000, vol. 25, p. 1052.CrossRefADSGoogle Scholar
  4. 4.
    Akhmanov, S.A., Visloukh, V.A., and Chirkin, A.S., Optika femtosekundnykh lazernykh impul’sov (Optics of Femtosecond Laser Pulses), Moscow: Nauka, 1988.Google Scholar
  5. 5.
    Agrawal, G.P., Nonlinear Fiber Optics, San Diego: Academic, 1995.Google Scholar
  6. 6.
    Dudley, J.M. and Coen, S., Opt. Express., 2004, vol. 12, no. 11, p. 2423.CrossRefADSGoogle Scholar
  7. 7.
    Kinsler, P. and New, G.H.C., Phys. Rev. A, 2003, vol. 67, 023 813.Google Scholar
  8. 8.
    Witte, S., Zinkstok, R., et al., Opt. Express., 2005, vol. 13, no. 13, p. 4903.CrossRefADSGoogle Scholar
  9. 9.
    Tavella, F., Nomura, Y., et al., Opt. Lett., 2007, vol. 32, no. 15, p. 2227.CrossRefADSGoogle Scholar
  10. 10.
    Nurhuda, M., Suda, A., Kaku, M., and Midorikawa, K., Appl. Phys. B, 2007, vol. 89, p. 209.CrossRefADSGoogle Scholar
  11. 11.
    Vinogradova, M.B., Rudenko, O.V., and Sukhorukov, A.P., Teoriya voln (Theory of Waves), Moscow: Nauka, 1990.zbMATHGoogle Scholar
  12. 12.
    Brabec, T. and Krausz, F., Phys. Rev. Lett., 1997, vol. 78, p. 3282.CrossRefADSGoogle Scholar
  13. 13.
    Brabec, T. and Krausz, F., Rev. Mod. Phys., 2000, vol. 72, p. 545.CrossRefADSGoogle Scholar
  14. 14.
    Kozlov, S.A. and Sazonov, S.V., Zh. Éksp. Teor. Fiz., 1997, vol. 111, p. 404.Google Scholar
  15. 15.
    Dubrovskaya, O.V. and Sukhorukov, A.P., Izv. Ross. Akad. Nauk, Ser. Fiz., 1992, vol. 56, no. 12, p. 184.Google Scholar
  16. 16.
    Karamzin, Yu.N., Potashnikov, A.S., and Sukhorukov, A.P., Izv. Ross. Akad. Nauk, Ser. Fiz., 1996, vol. 60, no. 12, p. 29.Google Scholar
  17. 17.
    Kozlov, S.A., Problemy kogerentnoi i nelineinoi optiki (Problems of Coherent and Nonlinear Optics), St. Petersburg: Izd-vo SPbGU ITMO, 2000.Google Scholar
  18. 18.
    Kozlov, S.A. and Samartsev, V.V., Optika femtosekundnykh lazernykh impul’sov (Optics of Femtosecond Laser Pulses), St. Petersburg: Izd-vo SPbGU ITMO, 2007.Google Scholar

Copyright information

© Allerton Press, Inc. 2008

Authors and Affiliations

  • O. I. Paseka
    • 1
  • V. E. Lobanov
    • 1
  • A. P. Sukhorukov
    • 1
    Email author
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations