Properties of Gaussian waveguide modes of an optical cavity with a metamaterial

  • D. O. Saparina
  • A. P. SukhorukovEmail author
Proceedings of the XI All-Russia Seminar “Wave Phenomena in Inhomogeneous Media”


A theory of excitation of waveguide modes in an open two-mirror cavity containing layers with positive and negative refractive indices is proposed. Relations between the mirror curvatures and the thicknesses and refractive indexes of the layers at which the main mode has the Gaussian beam structure are derived. The stability of such cavities is analyzed.


Gaussian Beam Waveguide Mode Optical Cavity Negative Refractive Index Gaussian Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Veselago, V.G., Usp. Fiz. Nauk, 1967, vol. 92, no. 3, p. 517.Google Scholar
  2. 2.
    Parazzoli, C.G., Greegor, R.B., Li, K., et al., Phys. Rev. Lett., 2003, vol. 90, no. 10, 107 401.Google Scholar
  3. 3.
    Parimi, P.V., Lu, W.T., Vodo, P., et al., Phys. Rev. Lett., 2004, vol. 92, no. 12, 077 401.Google Scholar
  4. 4.
    Shalaev, V.M., Cai, W., Chettiar, U.K., et al., Opt. Lett., 2005, vol. 30, no. 24, p. 3356.CrossRefADSGoogle Scholar
  5. 5.
    Pendry, J.B., Phys. Rev. Lett., 2000, vol. 85, p. 3966.CrossRefADSGoogle Scholar
  6. 6.
    Melville, D.O.S., Opt. Express., 2005, vol. 13, p. 2127.CrossRefADSGoogle Scholar
  7. 7.
    Fang, N., Science, 2005, vol. 308, p. 534.CrossRefADSGoogle Scholar
  8. 8.
    Panfilova, N.O., Saparina, D.O., and Sukhorukov, A.P., Izv. Ross. Akad. Nauk, Ser. Fiz., 2006, vol. 70, no. 12, p. 1722.Google Scholar
  9. 9.
    Engheta, N., IEEE Antennas Wireless Propagation Lett., 2002, vol. 1, no. 1, p. 10.CrossRefGoogle Scholar
  10. 10.
    Ishchenko, E.F., Otkrytye opticheskie rezonatory: Nekotorye voprosy teorii i rascheta (Open Optical Resonators: Some Problems of Theory and Calculation), Moscow: Sov. Radio, 1980.Google Scholar
  11. 11.
    Vinogradova, M.B., Rudenko, O.V., and Sukhorukov, A.P., Teoriya voln (Theory of Waves), Moscow: Nauka, 1990.zbMATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2008

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations