Wave effects in acoustic media with a negative refractive index

  • V. A. BurovEmail author
  • K. V. Dmitriev
  • S. N. Sergeev
Proceedings of the XI All-Russia Seminar “Wave Phenomena in Inhomogeneous Media”


A method for analyzing media with a negative refractive index in acoustics has been proposed. An analog of the Lippmann-Schwinger equation is derived from the initial hydrodynamical equation and a theory of wave scattering by inhomogeneities of a medium with an arbitrarily specified value and sign of density and compressibility is constructed. Numerical simulation of the effects related to negative refraction is performed.


Negative Refraction Positive Material Oscillation Velocity Negative Refractive Index Refract Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Veselago, V.G., Usp. Fiz. Nauk, 1967, vol. 92, no. 3, p. 517 [Sov. Phys. Usp. (Engl. Transl.), vol. 10, no. 4, p. 517].Google Scholar
  2. 2.
    Smith, D.R., Padilla, W.J., Vier, D.C., et al., Phys. Rev. Lett., 2000, vol. 84, no. 18, p. 4184.CrossRefADSGoogle Scholar
  3. 3.
    Pendry, J.B. and Smith, D.R., Phys. Today, 2004, June, p. 37.Google Scholar
  4. 4.
    Kolinko, P. and Smith, D.R., Opt. Express., 2003, vol. 11, no. 7, p. 640.ADSCrossRefGoogle Scholar
  5. 5.
    Chan, C.T., Li, J., and Fung, K.H., J. Zhejiang Univ. Sci., 2006, vol. 7, no. 1, p. 24.zbMATHCrossRefGoogle Scholar
  6. 6.
    Li, J. and Chan, C.T., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2004, vol. 70, no. 5, 055 602-1.Google Scholar
  7. 7.
    Ying, W., Yun, L., and Zhao-Qing, Zh., Phys. Rev. B: Condens. Matter Mater. Phys., 2007, vol. 76, 205 313-1.Google Scholar
  8. 8.
    Bliokh, K.Yu. and Bliokh, Yu.P., Usp. Fiz. Nauk, 2004, vol. 174, no. 4, p. 439 [Phys. Usp. (Engl. Transl.), vol. 47, no. 4, p. 393].CrossRefGoogle Scholar
  9. 9.
    Voitovich, N.N., Katsenelenbaum, B.Z., Sizov, A.N., Obobshchennyi metod sobstvennykh kolebanii v teorii difraktsii (Generalized Method of Eigenoscillations in Diffraction Theory) Moscow: Nauka, 1977.Google Scholar
  10. 10.
    Goryunov, A.A. and Rumyantseva, O.D., Funktsional’no-matrichnyi formalizm v obratnykh zadachakh rasseyaniya skalyarnoi lineinoi akustiki (Functional Matrix Formalism in Inverse Scattering Problems of Scalar Linear Acoustics), Moscow: Inst. Okeanologii AN SSSR, 1991.Google Scholar
  11. 11.
    Akustika v zadachakh (Acoustics in Problems), Gurbatov, S.N. and Rudenko, O.V., Eds., Moscow: Nauka, 1996.Google Scholar
  12. 12.
    Burov, V.A., Vecherin, S.N., and Rumyantseva, O.D., Akust. Zh., 2004, vol. 50, no. 1, p. 14 [Acoust. Phys. (Engl. Transl.), vol. 50, no. 1, p. 9].Google Scholar
  13. 13.
    Burov, V.A., Dmitriev, K.V., and Sergeev, S.N., Sb. tr. XX sessii Rossiiskogo akusticheskogo obshchestva (Proceedings of the XX Session of the Russian Acoustic Society), Moscow: GEOS, 2008, vol. 1, no. 18, p. 213.Google Scholar
  14. 14.
    Pendry, J.B., Phys. Rev. Lett., 2000, vol. 85, no. 18, p. 3966.CrossRefADSGoogle Scholar

Copyright information

© Allerton Press, Inc. 2008

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations