Skip to main content

Transition of the CdS disordered structure to the wurtzite structure with an increase in the nanoparticle size


The dependence of the structure of cadmium sulfide nanoparticles on their size has been established for nanopowders and thin films. Nanoparticles from 3 to 8 nm in size have a disordered close-packed structure, characterized by the absence of periodic sequence of packing planes. Particles more than 14 nm in size have wurtzite structure, which is typical of bulk cadmium sulfide. The size of the disordered-phase particles was determined from the Scherrer-Debye formula. The size of wurtzite-phase particles was determined by the Williamson-Hall method.

This is a preview of subscription content, access via your institution.


  1. 1.

    Gleiter, H., Acta Mater., 2000, vol. 48, p. 1.

    Article  Google Scholar 

  2. 2.

    Gusev, A.I. and Rempel, A.A., Nanocrystalline Materials, Cambridge: Cambridge Int. Sci., 2004.

    Google Scholar 

  3. 3.

    Metin, H. and Esen, R., J. Cryst. Growth, 2003, vol. 258, p. 141.

    Article  ADS  Google Scholar 

  4. 4.

    Rempel, A.A., Usp. Khim., 2007, vol. 76, p. 474.

    Google Scholar 

  5. 5.

    Rempel, A.A., Kozhevnikova, N.S., van den Berghe, S., et al., Phys. Status Solidi (b), 2005, vol. 242, p. R61.

    Article  ADS  Google Scholar 

  6. 6.

    Rusu, M., Rumberg, A., Schuler, S., et al., J. Phys. Chem. Solids, 2003, vol. 64, p. 1849.

    Article  ADS  Google Scholar 

  7. 7.

    Bruchez, M., Moronne, M., Jr., Gin, P., et al., Science, 1998, vol. 281, p. 2013.

    Article  ADS  Google Scholar 

  8. 8.

    De Farias, P.M.A., Santos, B.S., de Menezes, F.D., et al., J. Microsc., 2005, vol. 219, p. 103.

    Article  MathSciNet  Google Scholar 

  9. 9.

    Kozhevnikova, N.S., Vorokh, A.S., and Rempel, A.A., Biosovmestimye nanostrukturnye materialy i pokrytiya meditsinskogo naznacheniya (Biocompatible Nanostructured Materials and Coatings for Medicine), Kolobov, Yu.F., Ed., Belgorod: Izd-vo Inst. Khimii Rastvorov RAN, 2006, p. 95.

    Google Scholar 

  10. 10.

    Vorokh, A.S. and Rempel, A.A., Fiz. Tverd. Tela (St. Petersburg), 2007, vol. 49, no. 1, p. 143.

    Google Scholar 

  11. 11.

    Vorokh, A.S. and Rempel, A.A., Dokl. Ross. Akad. Nauk, 2007, vol. 413, p. 743.

    Google Scholar 

  12. 12.

    Vorokh, A.S., Kozhevnikova, N.S., Rempel, A.A., and Magerl, A., Physics, Chemistry, and Application of Nanostructures, Singapore: World Sci., 2007, p. 312.

    Google Scholar 

  13. 13.

    Andrushko, A.F., Fiz. Tverd. Tela (Leningrad), 1962, vol. 4, p. 582 [Sov. Phys. Solid State (Engl. Transl.), vol. 4, p. 424].

    Google Scholar 

  14. 14.

    Xu, R., Wang, Y., Jia, G., et al., J. Cryst. Growth, 2007, vol. 299, p. 28.

    Article  ADS  Google Scholar 

  15. 15.

    Wang, W., Liu, Z., Zheng, C., et al., Mater. Lett., 2003, vol. 57, p. 2755.

    Article  Google Scholar 

  16. 16.

    Wang, G.Z., Wang, Y.W., Chen, W., et al., Mater. Lett., 2001, vol. 48, p. 269.

    Article  Google Scholar 

  17. 17.

    Kozhevnikova, N.S., Kurlov, A.S., Uritzkaya, A.A., and Rempel. A.A, J. Struct. Chem., 2004, vol. 45, p. 154.

    Article  Google Scholar 

  18. 18.

    Wu, G.S., Yuan, X.Y., Xie, T., et al., Mat. Lett., 2004, vol. 58, p. 794.

    Article  Google Scholar 

  19. 19.

    Ramaiah, K.S., Pilkington, R.D., Hill, A.E., et al., Mat. Chem. Phys., 2001, vol. 68, p. 22.

    Article  Google Scholar 

  20. 20.

    El Maliki, H., de Berne, J.C., Marsillac, S., et al., Appl. Surf. Sci., 2003, vol. 205, p. 65.

    Article  Google Scholar 

  21. 21.

    Li, Z., Du, Y., Zhang, Z., and Pang, D., Reactive Funct. Polym., 2003, vol. 55, p. 35.

    Article  Google Scholar 

  22. 22.

    Zhang, Y.C., Wang, G.Y., and Hu, X.Y., J. Alloys Compd., 2007, vol. 437, p. 47.

    Article  Google Scholar 

  23. 23.

    Wu, X.C. and Tao, Y.R., J. Cryst. Growth, 2002, vol. 242, p. 309.

    Article  ADS  Google Scholar 

  24. 24.

    Yoshida, T., Yamaguchi, K., Kazitani, T., et al., J. Electron. Chem., 1999, vol. 473, p. 209.

    Article  Google Scholar 

  25. 25.

    Fainer, N.I., Rumyantsev, Yu.M., Kosinova, M.L., et al., Nucl. Instrum. Methods Phys. Res., Sect. A, 2000, vol. 448, p. 290.

    Article  ADS  Google Scholar 

  26. 26.

    Rami, M., Benamar, E., Fahoume, M., et al., Solid State Sci., 1999, vol. 1, p. 179.

    Article  Google Scholar 

  27. 27.

    Andersson, B., Gjonnes, J., and Forouhi, A.R., J. Less-Common Met., 1978, vol. 61, p. 273.

    Article  Google Scholar 

  28. 28.

    Scherrer, P., Nachr. Ges. Wiss. Gottingen, Math.-Phys. Kl, 1918, vol. 2, p. 98.

    Google Scholar 

  29. 29.

    Debye, P., Ann. Phys., 1915, vol. 46, p. 809.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. S. Vorokh.

Additional information

Original Russian Text © A.S. Vorokh, N.S. Kozhevnikova, A.A. Rempel, 2008, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2008, Vol. 72, No. 10, pp. 1472–1475.

About this article

Cite this article

Vorokh, A.S., Kozhevnikova, N.S. & Rempel, A.A. Transition of the CdS disordered structure to the wurtzite structure with an increase in the nanoparticle size. Bull. Russ. Acad. Sci. Phys. 72, 1395–1398 (2008).

Download citation


  • Wurtzite Structure
  • Scherrer Formula
  • Packing Plane
  • Hall Method
  • Debye Formula