Advertisement

Structure and functional characteristics of HTSC composites based on Bi-2223 with nitride nanoadditives

  • B. P. MikhailovEmail author
  • I. A. Rudnev
  • P. V. Bobin
  • A. R. Kadyrbaev
  • A. B. Mikhailova
  • S. V. Pokrovskii
Proceedings of the XXXIV Conference on Low-Temperature Physics “NT-34”
  • 20 Downloads

Abstract

The interaction of a number of nanosized (20–50 nm) and larger (3–4 μm) additives of refractory nitrides (AlN, HfN, TiN, ZrN, NbN, Si3N4, etc.) with the ceramic superconducting compound (Bi,Pb)2Sr2Ca2Cu3O10 + δ has been considered. The phase composition of the compounds, the cation composition of the existing phases, the morphology of the matrix grains and precipitates, and a number of functional characteristics (T C, J C, magnetization, density, and hardness) have been investigated. The possibility of increasing the critical current density and magnetization at 4.2 and 77 K by a factor of more than 3, as well as the physicomechanical properties (density and hardness), has been established.

Keywords

Nitrides Tantalum Hafnium Critical Current Density Niobium Carbide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Metallurgy of Superconducting Materials, Luhman, T. and Dew-Hughes, D., Eds., New York: Academic, 1979. Translated under the title Metallurgiya sverkhprovodyashchikh materialov, Moscow: Metallurgiya, 1984.Google Scholar
  2. 2.
    Tinkham, M., Introduction to Superconductivity, New York: McGraw-Hill, 1975. Translated under the title Vvedenie v sverkhprovodimost’, Moscow: Atomizdat, 1980.Google Scholar
  3. 3.
    Mikhailov, B.P., Burkhanov, G.S., Leitus, G.M., et al., Neorg. Mater., 1996, no. 10, p. 1225.Google Scholar
  4. 4.
    Mikhailov, B.P., Kazin, P.E., Lennikov, V.V., et al., Neorg. Mater., 2001, vol. 37, no. 6, p. 753.Google Scholar
  5. 5.
    Mikhailov, B.P., Burkhanov, G.S., Kazin, P.E., et al., Neorg. Mater., 2001, vol. 37, no. 11, p. 1402.Google Scholar
  6. 6.
    Mikhailov, B.P., Tazetdinova, N.F., Leitus, G.M., et al., J. Low Temp. Phys., 1996, vol. 105, nos. 5/6, p. 1553.CrossRefADSGoogle Scholar
  7. 7.
    Kolmakov, A.G., Mikhailov, B.P., Kazin, P.E., and Apal’kina, I.V., Neorg. Mater., 2003, vol. 39, no. 4, p. 1.CrossRefGoogle Scholar
  8. 8.
    Mikhailov, B.P., Rudnev, I.A., and Bobin, P.V., Inorg. Mater, 2004, vol. 40, Suppl. 2, p. 91.CrossRefGoogle Scholar
  9. 9.
    Blagoveshchenskii, Yu.V. and Panfilov, S.A., Elektrometallurgiya, 1999, no. 3, p. 28.Google Scholar
  10. 10.
    Rudnev, I.A., Mikhailov, B.P., and Bobin, P.V., Pis’ma Zh. Tekh. Fiz., 2005, vol. 31, no. 4, p. 88.Google Scholar
  11. 11.
    Rudnev, I.A., Eremin, A.V., Khodot, A.E., et al., Inorg. Mater., 2003, vol. 39, Suppl. 2, p. 113.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2007

Authors and Affiliations

  • B. P. Mikhailov
    • 1
    Email author
  • I. A. Rudnev
    • 2
  • P. V. Bobin
    • 2
  • A. R. Kadyrbaev
    • 1
  • A. B. Mikhailova
    • 1
  • S. V. Pokrovskii
    • 2
  1. 1.Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Engineering Physics InstituteMoscowRussia

Personalised recommendations