Effect of the nanoscale structural inhomogeneity on the magnetic and superconducting characteristics of fine-grained YBa2Cu3O y HTSCs

  • L. G. MamsurovaEmail author
  • N. G. Trusevich
  • N. B. Butko
  • A. A. Vishnev
Proceedings of the XXXIV Conference on Low-Temperature Physics “NT-34”


It has been experimentally established that the nanoscale structural inhomogeneity, inherent in fine-grained (0.4 ≤ 〈D〉 ≤ 2μm) high-temperature superconductors YBa2Cu3O y (y ≈ 6.92, T C ≈ 92 K) and manifesting itself in partial interplane redistribution of oxygen [1, 2], changes the density of states near the Fermi level and decreases the coherence length and density of superconducting carriers in CuO2 planes. The revealed relationship between the changes in these characteristics with respect to their equilibrium values corresponds to the relationship that might occur for conventional superconductors.


Coherence Length Oxygen Index Structural Disorder Orthorhombic Distortion Total Oxygen Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vishnev, A.A., Makarov, E.F., Mamsurova, L.G., et al., Fiz. Nizk. Temp. (Kharkov), 2004, vol. 30, p. 373 [Low Temp. Phys. (Engl. Transl.), 2004, vol. 30, no. 4, p. 275].Google Scholar
  2. 2.
    Makarov, E.F., Mamsurova, L.G., Permyakov, Yu.V., et al., Physica C, 2004, vol. 415, p. 29.CrossRefADSGoogle Scholar
  3. 3.
    Vishnev, A.A., Mamsurova, L.G., Pigalskiy, K.S., and Trusevich, N.G., Khim. Fiz., 2002, vol. 2, no. 11, p. 86.Google Scholar
  4. 4.
    Trusevich, N.G., Mamsurova, L.G., Pigalskiy, K.S., et al., Abstracts of Papers, 34-oe soveshchanie po fizike nizkikh temperatur (34th Conf. on Low-Temperature Physics), 2006, vol. 2, p. 257.Google Scholar
  5. 5.
    Lee, M., Tea, N., Song, Y.-Q., et al., Physica C, 1992, vol. 201, p. 95.CrossRefADSGoogle Scholar
  6. 6.
    Shimizu, T., Aoki, H., Yasuoka, H., et al., J. Phys. Soc. Jpn., 1993, vol. 62, p. 3710.CrossRefADSGoogle Scholar
  7. 7.
    Krüger, Ch., Conder, K., Schwer, H., and Kaldis, E., J. Solid State Chem., 1997, vol. 134, p. 356.CrossRefGoogle Scholar
  8. 8.
    Mamsurova, L.G., Pigalskiy, K.S., Trusevich, N.G., et al., Khim. Fiz., 2006, vol. 25, no. 12, p. 33.Google Scholar
  9. 9.
    Torron, C., Diaz, A., Pomar, A., et al., Phys. Rev. B: Condens. Matter Mater. Phys., 1994, vol. 49, p. 13 143.Google Scholar
  10. 10.
    Mosqueira, J., Carballeira, C., Ramallo, M.V., et al., Europhys. Lett. 2001, vol. 53, p. 632.CrossRefADSGoogle Scholar
  11. 11.
    Gor’kov, L.P., Zh. Eksp. Teor. Fiz., 1959, vol. 36, p. 1918 [Sov. Phys. JETP (Engl. Transl.), vol. 9, p. 1364].Google Scholar

Copyright information

© Allerton Press, Inc. 2007

Authors and Affiliations

  • L. G. Mamsurova
    • 1
    Email author
  • N. G. Trusevich
    • 1
  • N. B. Butko
    • 1
  • A. A. Vishnev
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations