Advertisement

Microwave detection of spatial-dispersion effects in superconductors

  • N. A. Volchkov
  • V. A. Dravin
  • A. L. KaruzskiiEmail author
  • V. N. Murzin
  • A. V. Perestoronin
  • A. P. Chernyaev
Proceedings of the XXXIV Conference on Low-Temperature Physics “NT-34”

Abstract

A microwave method based on the use of microstrip retardation systems for detecting spatial-dispersion effects in superconductors is proposed. Strong phase velocity retardation in a microstrip resonator has been revealed, which is explained by the influence of sharp strip edges, near which high curvature occurs for the coordinate system introduced to search for wave solutions. This circumstance leads to a spatial dependence of the phase velocity on the scale factors of the curvilinear coordinate system and may significantly reduce the phase velocity. Comparative estimates of the spatial effects in samples of a single-crystal high-temperature superconductor (YBaCuO), Nb, and Cu have been obtained from measurements of the total value and increment of the resonance frequency during the transition of the cooling helium from the liquid to gaseous state, depending of the sample position in the field of the microstrip resonator.

Keywords

Phase Velocity Spatial Effect Spatial Dispersion Effective Permittivity Curvilinear Coordinate System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belyavskii, V.I. and Kopaev, Yu.V., Usp. Fiz. Nauk, 2006, vol. 176, p. 457.CrossRefGoogle Scholar
  2. 2.
    Golovashkin, A.I., Karuzskii, A.L., Murzin, V.N., and Perestoronin, A.V., FPS’04, Sbornik rasshirennykh tezisov (FPS’04, Extended Abstracts), Moskwa-Zvenigorod, 2004, p. 40.Google Scholar
  3. 3.
    Golovashkin, A.I., Karuzskii, A.L., Murzin, V.N., and Perestoronin, A.V., Int. J. Mod. Phys. B, 2005, vol. 19, p. 173.CrossRefADSGoogle Scholar
  4. 4.
    Golovashkin, A.I., Karuzskii, A.L., Lykov, A.N., et al., Physica B, 2005, vol. 359–361, p. 551.CrossRefGoogle Scholar
  5. 5.
    Golovashkin, A.I., Karuzskii, A.L., Lykov, A.N., et al., J. Phys. Chem. Solids, 2006, vol. 67, p. 435.CrossRefADSGoogle Scholar
  6. 6.
    Golovashkin, A.I., Karuzskii, A.L., Mishachev, V.M., et al., J. Supercond: Inc. Novel Magnetism, 2006, DOI: 10.1007/s 10948-005-0100-4.Google Scholar
  7. 7.
    Apakina, V.N., Dravin, V.A., Eltsev, Yu.F., et al., Physica C, 1997, vols. 282–287, p. 1585.CrossRefGoogle Scholar
  8. 8.
    Davydov, A.S., Teoriya tverdogo tela (Theory of Solid State), Moscow: Nauka, 1976.Google Scholar
  9. 9.
    Jansen, R.H., IEEE Trans. Microwave Theory Tech., 1978, vol. 26, p. 75.CrossRefGoogle Scholar
  10. 10.
    Zarubanov, V.V. and Il’inskii, A.S., Matematicheskie modeli prikladnoi elektrodinamiki (Mathematical Models of Applied Electrodynamics), Dmitriev, V.I. and Il’inskii, A.S., Eds., Moscow: Mosk. Gos. Univ., 1984.Google Scholar
  11. 11.
    Dravin, V.A., Karuzskii, A.L., Krapivka, A.E., et al., Physica C, 2000, vols. 341–348, p. 2675.CrossRefGoogle Scholar
  12. 12.
    Karuzskii, A.L., Tskhovrebov, A.M., and Chernyaev, A.P., Sovremennaya matematika v fiziko-tekhnicheskikh zadachakh: mezhduved. sb. (Modern Mathematics in Physicotechnical Problems: Interdisciplinary Collected Works), Moscow: Izd-vo MFTI, 1986, p. 37.Google Scholar

Copyright information

© Allerton Press, Inc. 2007

Authors and Affiliations

  • N. A. Volchkov
    • 1
  • V. A. Dravin
    • 1
  • A. L. Karuzskii
    • 1
    Email author
  • V. N. Murzin
    • 1
  • A. V. Perestoronin
    • 1
  • A. P. Chernyaev
    • 1
  1. 1.Lebedev Institute of PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations