Effect of temperature-strain-rate conditions on grain growth upon heating copper and iron

  • T. I. Chashchukhina
  • L. M. Voronova
  • M. V. Degtyarev


Stability upon heating an ultrafine structure with high-angle boundaries obtained by shear deformation under pressure depends on the mechanism of its formation (dynamic recrystallization or work hardening) determined by the temperature-rate conditions of plastic deformation. Dynamic recrystallization does not allow attainment of a thermally stable structure.


Shear Deformation Dynamic Recrystallization Rotational Mode Cold Deformation Bridgman Anvil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bernshtein, M.L., Zaimovskii, V.A., Kaputkina M.L., Termomekhanicheskaya obrabotka stali (Thermomechanical Treatment of Steel), Moscow: Metallurgiya, 1983.Google Scholar
  2. 2.
    Levit, V.I. and Smirnov, M.A., Vysokotemperaturnaya termomekhanicheskaya obrabotka austenitnykh stalei i splavov (High-Temperature Thermomechanical Treatment of Austenitic Steels and Alloys), Chelyabinsk: Izd. ChGTU, 1995.Google Scholar
  3. 3.
    Bernshtein, M.L., Dobatkin, S.V., Kaputkina, M.L., and Prokoshkin, S.D., Diagrammy goryachei deformatsii, structura i svoistva stalei (Hot-Deformation Diagrams and Structure and Properties of Steels), Moscow: Metallurgiya, 1989.Google Scholar
  4. 4.
    Kaibyshev, R.O., Dynamic Recrystallization and Mechanisms of Plastic Deformation in Magnesium Alloys and Steels, Extended Abstract of Doctoral (Phys.-Math.) Dissertation, Moscow: Moscow State Inst. of Steel and Alloys, 1995, p. 32.Google Scholar
  5. 5.
    Bykov, V.M., Likhachev, V.A., Nikonov, Yu.A., et al., Fiz. Met. Metalloved., 1978, vol. 45, no. 1, pp. 163–169.Google Scholar
  6. 6.
    Smirnova, N.A., Levit, V.I., Pilyugin, V.P., et al., Fiz. Met. Metalloved., 1986, vol. 61, no. 6, pp. 1170–1177.Google Scholar
  7. 7.
    Amirkhanov, N.M., Islamgaliev, R.K., and Valiev, R.Z., Fiz. Met. Metalloved., 1998, vol. 86, no. 3, pp. 99–105.Google Scholar
  8. 8.
    Degtyarev, M.V., Voronova, L.M., Chashchukhina, T.I., et al., Fiz. Met. Metalloved., 2003, vol. 96, no. 6, pp. 100–108.Google Scholar
  9. 9.
    Pilugin, V.P., Structural and Phase Transformations in Iron Alloys during High Pressure Deformation, Extended Abstract of Cand. Sci. (Phys.-Math.) Dissertation, Ekaterinburg: Inst. of Metal Physics, Ural Division, Russian Academy of Sciences, 1993, p. 200.Google Scholar
  10. 10.
    Andrievskii, R.A., J. Usp. Khim., 2002, vol. 71, no. 2, pp. 967–981.Google Scholar
  11. 11.
    Degtyarev, M.V., Chashchukhina, T.I., Romanova, M.Yu., and Voronova, L.M., Doklady Acad. Nauk, 2004, vol. 397, no. 2, pp. 193–197 [Docl. Phys. (Engl. Transl.), vol. 49, no. 7, p. 415].zbMATHGoogle Scholar
  12. 12.
    Smirnova, N.A., Levit, V.I., Pilyugin, V.P., et al., Fiz. Met. Metalloved., 1986, vol. 62, no. 3, pp. 566–570.Google Scholar

Copyright information

© Allerton Press, Inc. 2007

Authors and Affiliations

  • T. I. Chashchukhina
    • 1
  • L. M. Voronova
    • 1
  • M. V. Degtyarev
    • 1
  1. 1.Institute of Metal Physics, Ural DivisionRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations