Advertisement

Effect of hydrogenation on the spectra of electronic and vibrational transitions in single-walled carbon nanotubes

  • A. V. Bazhenov
  • T. N. Fursova
  • I. O. Bashkin
  • I. V. Kondrat’eva
  • A. V. Krestinin
  • Yu. M. Shul’ga
Article
  • 15 Downloads

Abstract

Single-walled carbon nanotubes containing 5.4 wt% H are prepared under a hydrogen pressure of 50 kbar at the temperature T = 500°C. Analysis of the optical transmission spectra has revealed that the hydrogenation of single-walled carbon nanotubes brings about suppression of high-frequency conduction provided by free charge carriers in the nanotubes, the disappearance of interband electronic transitions, and the appearance of an absorption line at 2845 cm−1 corresponding to stretching vibrations of the C-H bonds. The removal of hydrogen from hydrogenated single-walled carbon nanotubes owing to vacuum annealing at a temperature of 500°C is accompanied by a linear decrease in the intensity of this line as the hydrogen content in the system decreases. This phenomenon indicates that the greater part of the hydrogen atoms in single-walled carbon nanotubes are covalently bonded to the carbon atoms.

Keywords

Carbon Nanotubes Absorption Line Hydrogen Content Optical Density Spectrum Walled Carbon Nanotubes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dillon, A.C. and Heben, M.J., Appl. Phys. A: Mater. Sci. Process., 2001, vol. 72, pp. 133–142.ADSCrossRefGoogle Scholar
  2. 2.
    Kolesnikov, A.I., Antonov, V.E., Bashkin, I.O., et al., Physica A (Amsterdam), 1999, vols. 263–264, pp. 436–438.Google Scholar
  3. 3.
    Lin, M.F. and Shung, K.W., Phys. Rev. B: Condens. Matter, 1994, vol. 50, no. 23, pp. 17744–17747.ADSGoogle Scholar
  4. 4.
    Jarillo-Herrero, P., Sapmaz, S., Dekker, C., et al., Nature (London), 2004, vol. 429, pp. 389–391.CrossRefADSGoogle Scholar
  5. 5.
    Chiang, I.W., Brinson, B.E., Smalley, R.E., et al., J. Phys. Chem. B, 2001, vol. 105, no. 6, pp. 1157–1161.CrossRefGoogle Scholar
  6. 6.
    Bachilo, S.M., Strano, M.S., Kittrell, C., et al., Science (Washington), 2002, vol. 298, pp. 2361–2366.CrossRefADSGoogle Scholar
  7. 7.
    Saito, R., Dresselhaus, G., Dresselhaus, M.S., and Dresselhaus, G., Physical Properties of Carbon Nanotubes, London: Imperial College Press, 1998.Google Scholar
  8. 8.
    Boul, P.J., Lui, J., Mickelson, E.T., et al., Chem. Phys. Lett., 1999, vol. 310, nos. 3–4, pp. 367–372.CrossRefADSGoogle Scholar

Copyright information

© Allerton Press, Inc. 2007

Authors and Affiliations

  • A. V. Bazhenov
    • 1
  • T. N. Fursova
    • 1
  • I. O. Bashkin
    • 1
  • I. V. Kondrat’eva
    • 1
  • A. V. Krestinin
    • 2
  • Yu. M. Shul’ga
    • 2
  1. 1.Institute of Solid-State PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Institute for Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations