Advertisement

Slow amorphization of zeolites

  • N. N. Ovsyuk
  • S. V. Goryainov
Article

Abstract

The dynamics of amorphization in two zeolites with different densities is investigated using high-pressure Raman spectroscopy. Slow amorphization of the denser zeolite under pressure leads to the formation of a low-density amorphous (LDA) phase that transforms into a more disordered high-density amorphous (HDA) phase with a further increase in the pressure. It is revealed that the LDA-HDA transformation is a first order phase transition occurring with an increase in the silicon coordination.

Keywords

Zeolite Raman Spectrum Raman Spectroscopy Leucite Potassium Cation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mishima, O., Calvert, L.D., and Whalley, E., Nature (London), 1984, vol. 310, pp. 393–395.CrossRefADSGoogle Scholar
  2. 2.
    Williams, Q. and Jeanloz, R., Science (Washington), 1988, vol. 239, pp. 902–905.CrossRefADSGoogle Scholar
  3. 3.
    Tsiok, O.B., Brazhkin, V.V., Lyapin, A.G., and Khvorostuntsev, L.G., Phys. Rev. Lett., 1998, vol. 80, pp. 999–1002.CrossRefADSGoogle Scholar
  4. 4.
    Mishima, O., Calvert, L.D., and Whalley, E., Nature (London), 1985, vol. 314, pp. 76–77.CrossRefADSGoogle Scholar
  5. 5.
    Durandurdu, M. and Drabold, D.A., Phys. Rev. B: Condens. Matter, 2001, vol. 64, p. 014101.Google Scholar
  6. 6.
    Brazhkin, V.V. and Lyapin, A.G., Pis’ma Zh. Eksp. Teor. Fiz., 2003, vol. 78, pp. 1030–1035 [JETP Lett. (Engl. transl.), 2003, vol. 78, pp. 542–547].Google Scholar
  7. 7.
    Greaves, G.N., Meneau, F., Sapelkin, L.M., et al., Nat. Mater, 2003, vol. 2, pp. 622–629.CrossRefADSGoogle Scholar
  8. 8.
    Greaves, G.N. and Meneau, F., J. Phys.: Condens. Matter, 2004, vol. 16, pp. S3459–S3472.CrossRefADSGoogle Scholar
  9. 9.
    Richet, P. and Gillet, P., Eur. J. Mineral, 1997, vol. 9, pp. 907–933.Google Scholar
  10. 10.
    Greaves, G.N., Meneau, F., and Sankar, G., Nucl. Instrum. Methods Phys. Res., Sect. B, 2003, vol. 199, pp. 98–107.CrossRefADSGoogle Scholar
  11. 11.
    McMillan, P.F., Wilson, M., Daisenberger, D., and Machon, D., Nat. Mater, 2005, vol. 4, pp. 680–684.CrossRefADSGoogle Scholar
  12. 12.
    Poole, P.H., Grande, T., Angell, C.A., and McMillan, P.F., Science (Washington), 1997, vol. 275, pp. 322–323.CrossRefGoogle Scholar
  13. 13.
    Pasquarello, A. and Car, R., Phys. Rev. Lett., 1998, vol. 80, pp. 5145–5147.CrossRefADSGoogle Scholar
  14. 14.
    Ovsyuk, N.N. and Goryainov, S.V., Phys. Rev. B: Condens. Matter, 1999, vol. 60, pp. 14481–14484.ADSGoogle Scholar

Copyright information

© Allerton Press, Inc. 2007

Authors and Affiliations

  • N. N. Ovsyuk
    • 1
  • S. V. Goryainov
    • 1
  1. 1.Institute of Geology and Mineralogy, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations