Advertisement

Microscopic theory of second-order and third-order elastic constants for an NaCl crystal

  • O. V. Kukin
Article

Abstract

Relations between the second-order and third-order symmetry-independent elastic constants and the energy of interatomic interactions dependent on the mutual arrangement of pairs and triplets of atoms are obtained for crystals belonging to the crystal class O h. The derived relations and experimental data on the elastic constants are used to calculate four third-order elastic constants and the temperature dependence of the elastic anisotropy factor a(T) for an NaCl crystal. The calculated dependence a(T) is in qualitative agreement with the experimental dependence a exp(T).

Keywords

Elastic Constant Thermodynamic Potential Crystal Class Order Elastic Constant Strain Tensor Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Drabble, J.R. and Strathen, R.E.B., Proc. Phys. Soc. (London), 1967, vol. 92, pp. 1090–1095.CrossRefGoogle Scholar
  2. 2.
    Anderson, O.L., Physical Acoustics, New York: Academic, 1965, vol. 3, part B, pp. 61–121. Translated under the title Fizicheskaya akustika, Moscow: Mir, 1968.Google Scholar
  3. 3.
    Born, M. and Huang, K., Dynamical Theory of Crystal Lattices, Oxford: Clarendon, 1954. Translated under the title Dinamicheskaya teoriya kristallicheskikh reshetok, Moscow: Inostrannaya Literatura, 1958.zbMATHGoogle Scholar
  4. 4.
    Landau, L.D. and Lifshitz, E.M., Kurs teoreticheskoi fiziki. Tom 5: Statisticheskaya fizika, Moscow: Nauka, 1964. Translated under the title Course of Theoretical Physics. Volume 5: Statistical Physics, Oxford: Butterworth-Heinemann, 1968.Google Scholar
  5. 5.
    Gufan, Yu.M., Struktumye fazovye perekhody (Structural Phase Transitions), Moscow: Nauka, 1989 [in Russian].Google Scholar
  6. 6.
    Landau, L.D. and Lifshitz, E.M., Kurs teoreticheskoi fiziki. Tom 7: Teoriya uprugosti, Moscow: Nauka, 1986. Translated under the title Course of Theoretical Physics. Volume 7: Theory of Elasticity, Oxford: Butterworth-Heinemann, 1986.Google Scholar
  7. 7.
    Leibfried, G. and Hahn, H., Z. Phys., 1958, vol. 150, p. 497.zbMATHCrossRefGoogle Scholar
  8. 8.
    Nikanorov, S.P., Nran’yan, A.A., and Stepanov, A.V., Fiz. Tverd. Tela (St. Petersburg), 1964, vol. 6, no. 7, pp. 1996–2002 [Sov. Phys. Solid State, 1965, vol. 6, no. 7, p. 1576].Google Scholar
  9. 9.
    Ghate, P.B., Phys. Rev. A., 1965, vol. 139, no. 5, pp. 1666–1674.CrossRefADSGoogle Scholar
  10. 10.
    Bokii, G.B., Kristallokhimiya (Crystal Chemistry), Moscow: Nauka, 1971 [in Russian].Google Scholar
  11. 11.
    Gufan, A.Yu., Prus, Yu.V., and Rumyantseva, V.V., Izv. Akad. Nauk, Ser. Fiz., 2004, vol. 68, no. 10, p. 1518.Google Scholar
  12. 12.
    Kukin, O.V., Izv. Akad. Nauk, Ser. Fiz., 2006, vol. 70, no. 4, p. 589.Google Scholar
  13. 13.
    Reissland, J.A., The Physics of Phonons, London: Willey and Sons, 1973. Translated under the title Fizika fononov, Moscow: Mir, 1975.Google Scholar

Copyright information

© Allerton Press, Inc. 2007

Authors and Affiliations

  • O. V. Kukin
    • 1
  1. 1.Rostov State UniversityRostov-on-DonRussia

Personalised recommendations