Skip to main content
Log in

Impact of Magnesium on Structural and Morphological Study of Co–Zn Ferrites

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

The Co0.8–xMgxZn0.2Fe2O4 (x = 0.00 to 0.56) ferrites were prepared by solid state reaction route. The phase composition and morphology of the synthesized ferrites were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. From the XRD results, single phase cubic spinal structure with space group Fd-3m was confirmed. The lattice constant (a), particle size (D), hopping lengths (LA and LB), bond lengths (A–O and B–O), ionic radii (rA and rB), microstrain (ε,) and dislocation density (ρD) were reported. The lattice constant increased as magnesium additive increased. The SEM image affirmed size and shape of particles. Crystallite size and microstrain were realized by W–H plot and SSP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Ponpandian, N. and Narayanasamy, A. Influence of grain size and structural changes on the electrical properties of nanocrystalline zinc ferrite, J. Appl. Phys., 2002, vol. 92, no. 5, pp. 2770–2778. https://doi.org/10.1063/1.1498883

    Article  CAS  ADS  Google Scholar 

  2. Anil Kumar, P.S., Shrotri, J.J., Deshpande, C.E., and Date, S.K., Systematic study of magnetic parameters of Ni–Zn ferrite synthesized by soft chemical approaches, J. Appl. Phys., 1997, vol. 81, pp. 4788–4790. https://doi.org/10.1063/1.365464

    Article  ADS  Google Scholar 

  3. Goldman, A., Handbook of modern ferromagnetic materials, NY: Springer, 1999. https://doi.org/10.1007/978-1-4615-4917-8

  4. Kakati, S., Rendale, M.K., and Mathad, S.N., Synthesis, characterization, and applications of CoFe2O4 and M–CoFe2O4 (M = Ni, Zn, Mg, Cd, Cu, RE) ferrites: A review, Int. J. Self-Propag. High-Temp. Synth., 2021, vol. 30, no. 4, pp. 189–219. https://doi.org/10.3103/S1061386221040038

    Article  CAS  Google Scholar 

  5. Kakati, S.S., Makandar, T.M., Rendale, M.K., and Mathad, S.N., Green synthesis approach for nanosized cobalt doped Mg–Zn through citrus lemon mediated sol–gel auto combustion method, Int. J. Self-Propag. High-Temp. Synth, 2022, vol. 31, no. 3, pp. 131–137. https://doi.org/10.3103/S1061386222030049/METRICS

    Article  CAS  Google Scholar 

  6. Bamzai, K.K., Kour, G., Kaur, B.K., and Kulkarni, S.D., Preparation and structural and magnetic properties of Ca substituted magnesium ferrite with composition MgCaxFe2–xO4 (x = 0.00, 0.01, 0.03, 0.05, 0.07), J. Mater., 2014, vol. 2014, pp. 1–8. https://doi.org/10.1155/2014/184340

    Article  CAS  Google Scholar 

  7. Šepeláket, V., Bergmann, I., Feldhoff, A., Litterst, F.J., Becker, K.D., Cadogan, J.M., Hofmann, M., Hoelzel, M., Wang, J.L., Avdeev, M., and Campbell, S.J., Mechanosynthesis of nanocrystalline MgFe2O4—neutron diffraction and Mössbauer spectroscopy, Hyperfine Interact., 2010, vol. 198, no. 1, pp. 67–71. https://doi.org/10.1007/S10751-010-0243-Y

    Article  ADS  Google Scholar 

  8. Yattinahalli, S.S., Kapatkar, S.B., and Mathad, S.N., Synthesis and structural characterization of nanomanganese ferrites, J. Nano- Electron. Phys., 2015, vol. 6, no. 2, p. 02009.

    Google Scholar 

  9. Molakeri, A.S., Kalyane, S., Kulkarni, A.B., and Mathad, S.N., Structural analysis of nano ferrites synthesized by combustion and microwave methods, Int. J. Self-Propag. High-Temp. Synth., 2018, vol. 27, no. 1, pp. 44–50. https://doi.org/10.3103/S1061386218010053

    Article  CAS  Google Scholar 

  10. Karpagavalli, S., Vethanathan, S.J.K., Perumal, S., Koilpillai, P., and Suganthi, A., A comparative study of optical and magnetic properties of undoped and cobalt doped manganese oxide nano particles, IOSR J. Appl. Phys., 2017, vol. 1, pp. 34–42. https://doi.org/10.9790/4861-17002013442

    Article  Google Scholar 

  11. Sileo, E.E., Rotelo, R., and Jacobo, S.E., Nickel zinc ferrites prepared by the citrate precursor method, Phys. B Condens. Matter, 2002, vol. 320, nos. 1–4, pp. 257–260. https://doi.org/10.1016/S0921-4526(02)00705-6

    Article  CAS  ADS  Google Scholar 

  12. Shirsath, S., Kadam, R.H., Gaikwad, A.S., Ghasemi, A., and Morisako, A., Effect of sintering temperature and the particle size on the structural and magnetic properties of nanocrystalline Li0.5Fe2.5O4, J. Magn. Magn. Mater., 2011, vol. 323, pp. 3104–3108. https://doi.org/10.1016/j.jmmm.2011.06.065

    Article  CAS  ADS  Google Scholar 

  13. Patil, K., Kadam, S., Lokhande, P., Balgude, S., and More, P., The effects of cobalt and magnesium co-doping on the structural and magnetic properties of ZnFe2O4 synthesized using a sonochemical process, Solid State Commun., 2021, vol. 337, p. 114435. https://doi.org/10.1016/J.SSC.2021.114435

    Article  CAS  Google Scholar 

  14. Liu, H., Li, A., Ding, X., Yang, F., and Sun, K., Magnetic induction heating properties of Mg1–xZnxFe2O4 ferrites synthesized by co-precipitation method, Solid State Sci., 2019, vol. 93, pp. 101–108. https://doi.org/10.1016/j.solidstatesciences.2019.05.005

    Article  CAS  ADS  Google Scholar 

  15. Singh, S.B., Srinivas, Ch., Tirupanyam, B.V., Prajapat, C.L., Singh. M.R., Meena, S.S., Pramod Bhatt, Yusuf, S.M., and Sastry, D.L., Structural, thermal and magnetic studies of MgxZn1−xFe2O4 nanoferrites: Study of exchange interactions on magnetic anisotropy, Ceram. Int., 2016, vol. 42, no. 16, pp. 19179–19186. https://doi.org/10.1016/j.ceramint.2016.09.081

    Article  CAS  Google Scholar 

  16. Pendyala, S.K., Thyagarajan, K., GuruSampath Kumar, A., and Obulapathi, L., Effect of Mg doping on physical properties of Zn ferrite nanoparticles, J. Aust. Ceram. Soc., 2018, vol. 54, no. 3, pp. 467–473. https://doi.org/10.1007/S41779-018-0173-8/METRICS

    Article  CAS  Google Scholar 

  17. Hassan, M.S., Morley, N.A., Ali, S.S., Amin, N., Bidi, A., and Arshad, M.I., Electrical, dielectric and magnetic properties of Mg2+ doped Zn–Co–La spinel ferrites for high microwave frequency (5.7–13.4 GHz) applications, 2020. https://doi.org/10.21203/rs.3.rs-27162/v1

  18. Mahmood, S., Nasir, S., Asghar, G., Iftikhar, M., Hussain, R., and Xing, G., Effect of Mg doping on dielectric and magnetic properties of Co–Zn nano ferrites, J. Ovonic Res., 2019, vol. 15, no. 2, pp. 95–102.

    CAS  Google Scholar 

  19. Humbe, A.V., Kounsalye, J.S., Shisode, M.V., and Jadhav, K.M., Rietveld refinement, morphology and superparamagnetism of nanocrystalline Ni0.70−xCuxZn0.30Fe2O4 spinel ferrite, Ceram. Int., 2018, vol. 44, no. 5, pp. 5466–5472. https://doi.org/10.1016/J.CERAMINT.2017.12.180

    Article  CAS  Google Scholar 

  20. Kulkarni, A.B. and Mathad, S.N., Synthesis and structural analysis of Co–Zn–Cd ferrite by Williamson–Hall and size–strain plot methods, Int. J. Self-Propag. High-Temp. Synth., 2018, vol. 27, no. 1, pp. 37–43. https://doi.org/10.3103/S106138621801003X/METRICS

    Article  CAS  Google Scholar 

  21. Shweta, G.M., Naik, L.R., Pujar, R.B., and Mathad, S.N., Influence of magnesium doping on structural and elastic parameters of Nickel Zinc nanoferrites, Mater. Chem. Phys., 2021, vol. 257, p. 123825. https://doi.org/10.1016/j.matchemphys.2020.123825

  22. Vegard, L.The constitution of mixed crystals and the space occupied by atoms, Zeitsch rift fiir Physics., 1921, vol. 5, no. 17, pp. 17–23. https://doi.org/10.1002/crat.200310059

    Article  CAS  ADS  Google Scholar 

  23. Mazen, S.A., Mansor, S.F., and Zaki, H.M., Some physical and magnetic properties of Mg–Zn ferrite, Cryst. Res. Technol., 2003, vol. 38, no. 6, pp. 471–478. https://doi.org/10.1002/crat.200310059

    Article  CAS  Google Scholar 

  24. Khot, S.S., Shinde, N.S., Ladgoankar, B., Kale, B., and Watawe, S., Effect of temperature of synthesis on X‑ray, IR properties of Mg–Zn ferrites prepared by oxalate co-precipitation method, Int. J. Adv. Eng. Technol., 2011.

  25. Raval, A., Panchal, N., and Jotania, R., Structural properties and microstructure of cobalt ferrite particles synthesized by a sol–gel auto combustion method, World Sci., 2013, vol. 22, pp. 558–563. https://doi.org/10.1142/S2010194513010660

    Article  CAS  Google Scholar 

  26. Kadam, S.M., Patil, S.I., Patil, S.H., and Chougule, B.K., Magnetization and cation distribution in CoxMg1–xFe2O4 system, Bull. Mater. Sci., 1992, vol. 15, no. 2, pp. 127–130. https://doi.org/10.1007/BF02927437

    Article  CAS  Google Scholar 

  27. Upadhyay, C., Verma, H.C., and Anand, S., Cation distribution in nanosized Ni–Zn ferrites, J. Appl. Phys., 2004, vol. 95, no. 10, pp. 5746–5751. https://doi.org/10.1063/1.1699501

    Article  CAS  ADS  Google Scholar 

  28. Wang, J., Sun, J., Sun, Q., and Chen, Q., One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties, Mater. Res. Bull., 2003, vol. 38, no. 7, pp. 1113–1118. https://doi.org/10.1016/S0025-5408(03)00129-6

    Article  CAS  Google Scholar 

  29. Pradeep, A., Priyadharsini, P., and Chandrasekaran, G., Structural, magnetic and electrical properties of nanocrystalline zinc ferrite, J. Alloys Compd., 2011, vol. 509, no. 9, pp. 3917–3923. https://doi.org/10.1016/j.jallcom.2010.12.168

    Article  CAS  Google Scholar 

  30. Vijaya Babu, K., Satyanarayana, G., Sailaja, B., Santosh Kumar, G.V., Jalaiah, K., and Ravi, M., Structural and magnetic properties of Ni0.8M0.2Fe2O4 (M = Cu, Co) nano crystalline ferrites, Results Phys., 2018, vol. 9, pp. 55–62. https://doi.org/10.1016/j.rinp.2018.01.048

    Article  ADS  Google Scholar 

  31. Das, R., Determination of intrinsic strain in poly(vinylpyrrolidone)-capped silver nano-hexapod using X‑ray diffraction technique, Curr. Sci., 2015, vol. 109, no. 4, pp. 775–778.

    Google Scholar 

  32. Tagliente, M.A. and Massaro, M., Strain-driven (002) preferred orientation of ZnO nanoparticles in ion-implanted silica, Nucl. Instrum. Methods Phys. Res. B, 2008, vol. 266, no. 7, pp. 1055–1061. https://doi.org/10.1016/j.nimb.2008.02.036

    Article  CAS  ADS  Google Scholar 

  33. Jacob, R. and Isac, J., X-ray diffraction line profile analysis of Ba0.6Sr0.4FexTi(1–x)O3–δ (x = 0.4), Int. J. Chem. Stud., 2015, vol. 2, no. 5, pp. 12–21.

    Google Scholar 

Download references

Funding

The authors received no financial support for the research, authorship, and publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. B. Kapatkar or S. N. Mathad.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolekar, R.Y., Kapatkar, S.B., Kakati, S.S. et al. Impact of Magnesium on Structural and Morphological Study of Co–Zn Ferrites. Int. J Self-Propag. High-Temp. Synth. 33, 58–66 (2024). https://doi.org/10.3103/S1061386224010047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386224010047

Keywords:

Navigation