Skip to main content
Log in

Rapidly Synthesizing Cu2Sb Phase of Tetragonal Structure by Electrothermal Explosion

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

In our study, we aimed to synthesize the Cu2Sb phase with a tetragonal structure. We achieved this by subjecting compacts (2Cu + Sb) to electrothermal explosion (ETE) with a high current density of 500 Å. To analyze the constituent phases of the alloy composite, we employed X-ray diffraction analysis with the MAUD program, which utilizes the Rietveld method, as well as scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) techniques. Furthermore, we investigated the mechanical properties through Vickers indentation and compression techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Ji, L.W., Lin, Z., Alcoutlabi, M., and Zhang, X.W., Recent developments in nanostructured anode materials for rechargeable lithium–ion batteries, Energy Environ. Sci., 2011, vol. 4, pp. 2682–2699. https://doi.org/10.1039/C0EE00699H

    Article  CAS  Google Scholar 

  2. Zhao, W., Choi,W., and Yoon, W.S., Nanostructured electrode materials for rechargeable lithium ion batteries, J. Electrochem. Sci. Technol., 2020, vol. 11, no.3, pp. 195–219. https://doi.org/10.33961/jecst.2020.00745

    Article  CAS  Google Scholar 

  3. He, J.C., Zhao, H.L., Wang, J., Wang, J., and Chen, J.B., Hydrothermal synthesis and electrochemical properties of nano-sized Co–Sn alloy anodes for lithium–ion batteries, J. Alloys Compd., 2010, vol. 508, pp. 629–635. https://doi.org/10.1016/j.jallcom.2010.08.152

    Article  CAS  Google Scholar 

  4. Winter, M. and Besenhard, J.O., Electrochemical lithiation of tin and tin-based intermetallics and composites, Electrochim. Acta.,1999, vol. 45, nos .1–2, pp. 31–50. https://doi.org/10.1016/S0013-4686(99)00191-7

  5. Tamura, N., Ohshita, R., and Fujimoto, M., Advanced structures in electrodeposited tin base negative electrodes for lithium secondary batteries, J. Electrochem. Soc., 2003, vol. 150, p. A679. https://doi.org/10.1149/1.1568108

    Article  CAS  Google Scholar 

  6. He, X.M., Ren, J.G., Wang, L., Pu, W.H., Jiang, C.Y., and Wan, C.R., Expansion and shrinkage of the sulfur composite electrode in rechargeable lithium batteries, J. Power Sources., 2009, vol. 190, pp. 154–156. https://doi.org/10.1016/j.jpowsour.2008.07.034

    Article  CAS  ADS  Google Scholar 

  7. Ren, J.G., He, X.M., Pu, W. H., Jiang, C.Y., and Wan, C.R., Chemical reduction of nano-scale Cu2Sb powders as anode materials for Li–ion batteries, Electrochim. Acta., 2006, vol. 52, pp. 1538–1541. https://doi.org/10.1016/j.electacta.2006.01.084

    Article  CAS  Google Scholar 

  8. Lee, J.J., Kim, B.J., and Min, W.S., Calorimetric investigations of liquid Cu–Sb, Cu–Sn and Cu–Sb–Sn alloys, J. Alloys Compd., 1993, vol. 202, pp. 237–242. https://doi.org/10.1016/0925-8388(93)90545-X

    Article  CAS  Google Scholar 

  9. Mosby, J.M. and Prieto, A.L., Direct electrodeposition of Cu2Sb for lithium–ion battery anodes, J. Am. Chem. Soc., 2008, vol. 130, no. 32, pp. 10656–10661. https://doi.org/10.1021/ja801745n

    Article  CAS  PubMed  Google Scholar 

  10. Song, S.W., Reade, R.P., Cairns, E.J., Vaughey, J.T., Thackeray, M.M., and Striebel, K.A., Cu2Sb thin-film electrodes prepared by pulsed laser deposition for lithium batteries, J. Electrochem. Soc., 2004, vol. 151, p. A1012. https://doi.org/10.1149/1.1758719

    Article  CAS  Google Scholar 

  11. Bryngelsson, H., Eskhult, J., Nyholm, L., and Edström, K., Thin films of Cu2Sb and Cu9Sb2 as anode materials in Li–ion batteries, Electrochim. Acta., 2008, vol. 53, pp. 7226–7234. https://doi.org/10.1016/j.electacta.2008.05.005

    Article  CAS  Google Scholar 

  12. Fernandez, A.M. and Turner, J.A., Preparation and photo characterization of Cu–Sb–Se films by electrodeposition technique, Sol. Energy Mater Sol. Cells., 2003, vol. 79, pp. 391–399. https://doi.org/10.1016/S0927-0248(02)00474-9

    Article  CAS  Google Scholar 

  13. Yao, W.J., Han, X.J., and Wei, B., High undercooling and rapid dendritic growth of Cu–Sb alloy in drop tube, Chin. Sci. Bull., 2002, vol. 47, no. 15, pp. 1312–1316. https://doi.org/10.1360/02tb9291

    Article  CAS  Google Scholar 

  14. Lee, C., Lin, C.Y., and Yen, Y.W., The 260°C phase equilibria of the Sn–Sb–Cu ternary system and interfacial reactions at the Sn–Sb/Cu joints, Intermetallics, 2007, vol. 15, pp. 1027–1037. https://doi.org/10.1016/j.intermet.2006.12.002

    Article  CAS  Google Scholar 

  15. Zhai, W., Wang, B.J., Lu, X.Y., and Wei, B., Rapid solidification mechanism of highly undercooled ternary Cu40Sn45Sb15 alloy, Appl. Phys. A, 2015, vol. 121, pp. 273–281. https://doi.org/10.1007/s00339-015-9430-7

    Article  CAS  ADS  Google Scholar 

  16. Gierlotka, W. and Jendrzejczyk-Handzlik, D., Thermodynamic description of the Cu–Sb binary system, J. Alloys Compd., 2009, vol. 484, pp. 172–176. https://doi.org/10.1016/j.jallcom.2009.05.056

    Article  CAS  Google Scholar 

  17. Fürtauer, S. and Flandorfer, H., A new experimental phase diagram investigation of Cu–Sb, Monatsh. Chem., 2012, vol. 143, pp. 1275–1287. https://doi.org/10.1007/s00706-012-0737-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen, S., Zi, A., Gierlotka, W., Yang, C., Wang, C., Lin, S., and Hsu, C., Phase equilibria of Sn–Sb–Cu system, Mater. Chem. Phys., 2012, vol. 132, pp. 703–715. https://doi.org/10.1016/j.matchemphys.2011.11.088

    Article  CAS  Google Scholar 

  19. Liu, X.J., Wu, C., Yang, M.J., Zhu, J.H., Yang, S.Y., Shi, Z., Lu, Y., Han, J.J., and Wang, C.P., Phase equilibria in the Cu–Sn–Sb ternary system, J. Phase Equilib. Diffus., 2018, vol. 39, pp. 820–831.https://doi.org/10.1007/s11669-018-0681-9

    Article  CAS  Google Scholar 

  20. Chen, J., Yin, Z., Sim, D., Tay, Y.Y., Zhang, H., Ma, J., Hng, H.H., and Yan, Q., Controlled CVD growth of Cu–Sb alloy nanostructructures, Nanotechnology, 2011, vol. 22, p. 325602. https://doi.org/10.1088/0957-4484/22/32/325602

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Guo, F., Zheng, H., Qin, J., Qin, X., Lv, T., Jia, Y., Xu, R., and Tian, X., Medium-range order and physical properties of Cu–20 at % Sb melts, J. Non-Cryst. Solids, 2012, vol. 358, pp. 3327–3331. https://doi.org/10.1016/j.jnoncrysol.2012.09.007

    Article  CAS  ADS  Google Scholar 

  22. Fransson, L.M.L., Vaughey, T., Benedek, R., Edström, K., Thomas, J.O., and Thackeray, M.M., Phase transitions in lithiated Cu2Sb anodes for lithium batteries: an in situ X-ray diffraction study, Electrochem. Commun., 2001, vol. 3, pp. 317–323. https://doi.org/10.1016/S1388-2481(01)00140-0

    Article  CAS  Google Scholar 

  23. Morcrette, M., Larcher, D., Tarascon, J.M., Edstrom, K., Vaughey, J.T., and Thackeray, M.M., Influence of electrode microstructure on the reactivity of Cu2Sb with lithium, Electrochim. Acta, 2007, vol. 52, pp. 5339–5345. https://doi.org/10.1016/j.electacta.2007.01.083

    Article  CAS  Google Scholar 

  24. Gusmão, M.S., Trichês, D.M., de Assunção, M.C., da Frota, H.O., de Souza, S.M., Poffo, C.M., and de Lima, J.C., Experimental and ab initio studies of nanostructured Cu2Sb produced by mechanical alloying, Mater. Lett., 2017, vol. 199, pp. 110–112. https://doi.org/10.1016/j.matlet.2017.04.070

    Article  CAS  Google Scholar 

  25. Subramanian, V., Zhu, H., and Wei, B., High-rate reversibility anode materials of lithium batteries from vapor-grown carbon nanofibers, J. Phys. Chem. B, 2006, vol. 110, pp. 7178–7183. https://doi.org/10.1021/jp057080j

    Article  CAS  PubMed  Google Scholar 

  26. Allcorn, E., Kim, S.O., and Manthiram, A., Thermal stability of active/inactive nanocomposite anodes based on Cu2Sb in lithium–ion batteries, J. Power Sources, 2015, vol. 299, pp. 501–508. https://doi.org/10.1016/j.jpowsour.2015.09.020

    Article  CAS  ADS  Google Scholar 

  27. Bendjemil, B., Hafs, A., Benaldjia, A., and Vrel, D., Superconducting NbTi by combustion synthesis, Int. J. Self-Propag. High-Temp. Synth., 2012, vol. 21, no. 2, pp. 117–123. https://doi.org/10.3103/S1061386212020021

    Article  CAS  Google Scholar 

  28. Hafs, A., Benaldjia, A., and Hafs, T., Superconducting Nb3Al by combustion synthesis: Structural characterization, Int. J. Self-Propag. High-Temp. Synth., 2016, vol. 25, no. 3, pp. 159–165. https://doi.org/10.3103/S106138621603002X

    Article  CAS  Google Scholar 

  29. Hamdi, S., Hafs, A., and Hafs, T., Cu–Sb solder alloy by combustion synthesis: Structural characterization and magnetic properties, Int. J. Self-Propag. High-Temp. Synth., 2021, vol. 30, no. 1, pp. 30–35. https://doi.org/10.3103/S1061386221010040

    Article  CAS  Google Scholar 

  30. Bendjemil, B., Bougdira, J., Segheri, N., Ramdane, W., Hafs, A., Habes, S., and Vrel, D., Quasi-crystalline Al70Cu20Fe10 by thermal explosion: Effect of AlCu doping on magnetic properties, Int. J. Self-Propag. High-Temp. Synth., 2007, vol. 16, no. 4, pp. 225–230. https://doi.org/10.3103/S1061386207040097

    Article  CAS  Google Scholar 

  31. Hafs, A. and Hafs, T., Structural and magnetic properties of MgCu2 laves phase alloys synthesized by electrothermal explosion, Int. J. Self-Propag. High-Temp. Synth., 2022, vol. 31, no. 2, pp. 69–73. https://doi.org/10.3103/S1061386222020030

    Article  CAS  Google Scholar 

  32. Ramdane, W., Bendjemil, B., Hafs, A., Hendaoui, A., Guerioune, M., and Vrel, D., Structural characterization and superconducting properties of MgB2 prepared by SHS-method, Int. J. Self-Propag. High-Temp. Synth., 2007, vol. 16, pp. 207–212. https://doi.org/10.3103/S1061386207040061

    Article  CAS  Google Scholar 

  33. Bendjemil, B., Segheri, N., Ramdane, W., Hafs, A., and Vrel, D., SHS quenching as a route to bulk glassy Fe34Co34B10Si14Nb8 alloys, Int. J. Self-Propag. High-Temp. Synth., 2007, vol. 16, pp. 231–234. https://doi.org/10.3103/S1061386207040103

    Article  CAS  Google Scholar 

  34. Rietveld, H.M., A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr., 1969, vol. 2, pp. 65–71. https://doi.org/10.1107/S0021889869006558

    Article  CAS  ADS  Google Scholar 

  35. Lutterotti, L., MAUD, CPD Newsletter (IUCr), 2000, vol. 24.

  36. Zhai, W., Wang, B.J., Lu, X.Y. and Wei, B., Rapid solidification mechanism of highly undercooled ternary Cu40Sn45Sb15 alloy., Appl. Phys. A, 2015, vol. 121, pp. 273–281. https://doi.org/10.1007/s00339-015-9430-7

    Article  CAS  ADS  Google Scholar 

  37. Sakthivel, T. and Mukhopadhyay, J., Microstructure and mechanical properties of friction stir welded copper, J. Mater. Sci., 2007, vol. 42, pp. 8126–8129. https://doi.org/10.1007/s10853-007-1666-y38

    Article  CAS  ADS  Google Scholar 

  38. Gholami, M., Vesely, J., Altenberger, I., Kuhn, H.A., Janecek, M., Wollmann, M., and Wagner, L., Effects of microstructure on mechanical properties of CuNiSi alloys, J. Alloys Compd., 2017, vol. 696, pp. 201–212. https://doi.org/10.1016/j.jallcom.2016.11.233

    Article  CAS  Google Scholar 

  39. Sun, Y.F., Xu, N., and Fujii, H., The microstructure and mechanical properties of friction stir welded Cu–30Zn brass alloys, Mater. Sci. Eng. A, 2014, vol. 589, pp. 228–234. https://doi.org/10.1016/j.msea.2013.09.094

    Article  CAS  Google Scholar 

  40. Park, H.S., Kimura, T., Murakamic, T., Nagano, Y., Nakata, K., and Ushio, M., Microstructures and mechanical properties of friction stir welds of 60% Cu–40% Zn copper alloy, Mater. Sci. Eng. A, 2004, vol. 371, nos. 1–2, pp. 160–169. https://doi.org/10.1016/j.msea.2003.11.030

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We also acknowledge the members of group L3M Annaba, Algeria, Dr. S. Leboub, M. Mittri, and H. Zedouri for taking SEM pictures and EDS measurements.

Funding

This work was supported by Algerian Directorate for Scientific Research and Technological Development Algeria (DGRSDT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hafs.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafs, A., Hafs, T., Berdjane, D. et al. Rapidly Synthesizing Cu2Sb Phase of Tetragonal Structure by Electrothermal Explosion. Int. J Self-Propag. High-Temp. Synth. 33, 67–74 (2024). https://doi.org/10.3103/S1061386224010035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386224010035

Keywords:

Navigation