Skip to main content
Log in

Self-Propagating High-Temperature Synthesis and Consolidation of MoSi2–MoB Heterophase Ceramics Alloyed with ZrB2

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

In this study, we investigate the self-propagating high-temperature synthesis (SHS) and consolidation of heterophase MoSi2–MoB ceramics alloyed with ZrB2. A thermodynamic analysis of the combustion temperature (Tad) and the equilibrium composition of synthesis products was performed for the Zr–Mo–Si–B system. The effect of varying Zr and B concentrations on combustion kinetics was studied in detail. The resulting heterophase SHS powders showed high structural and chemical homogeneity, though were noticeably agglomerated. We identified optimal consolidation conditions and achieved compact ceramics with a phase composition identical to the original SHS powder. The ceramic structure consists of a matrix of MoSi2 grains with interspersed needle-like ZrB2 grains and polyhedral inclusions of MoB. This work establishes a basis for the preparation of MoSi2–MoB–ZrB2 ceramics with excellent hardness, fracture toughness, thermal conductivity, and high-temperature oxidation resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Sani, E., Mercatelli, L., Meucci, M., Balbo, A., Musa, C., Licheri, R., Orrù, R., and Cao, G., Optical properties of dense zirconium and tantalum diborides for solar thermal absorbers, Renew. Energ., 2016, vol. 91, pp. 340–346. https://doi.org/10.1016/j.renene.2016.01.068

    Article  Google Scholar 

  2. Fahrenholtz, W.G. and Hilmas, G.E., Ultra-high temperature ceramics: Materials for extreme environments, Scr. Mater., 2017, vol. 129, pp. 94–99. https://doi.org/10.1016/j.scriptamat.2016.10.018

    Article  CAS  Google Scholar 

  3. Bertin, J.J. and Johnson, S.W., Access to space-systems and technologies to support it, J. Aerosp. Eng., 1997, vol. 10, no. 2, pp. 53–59. https://doi.org/10.1061/(ASCE)0893-1321(1997)10:2(53)

    Article  Google Scholar 

  4. Vorotilo, S., Potanin, A.Yu., Pogozhev, Yu.S., Levashov, E.A., Kochetov, N.A., and Kovalev, D.Yu., Self-propagating high-temperature synthesis of advanced ceramics MoSi2–HfB2–MoB, Ceram, Int, 2019, vol. 45, no. 1, pp. 96–107. https://doi.org/10.1016/j.ceramint.2018.09.138

    Article  CAS  Google Scholar 

  5. Wuchina, E., Opila, E., Opeka, M., Fahrenholtz, W.G., and Talmy, I., UHTCs: ultra-high temperature ceramic materials for extreme environment applications, Electrochem. Soc. Interf., 2007, vol. 16, pp. 30-36. https://doi.org/10.1149/2.F04074IF

    Article  CAS  Google Scholar 

  6. Sonber, J.K., Murthy, T.S.R.Ch., Subramanian, C., Kumar, S., Fotedar, R.K., and Suri, A.K., Investigations on synthesis of ZrB2 and development of new composites with HfB2 and TiSi2, Int. J. Refract. Met. Hard Mater., 2011, vol. 29, no. 1, pp. 21–30. https://doi.org/10.1016/j.ijrmhm.2010.06.007

    Article  CAS  Google Scholar 

  7. Nasseri, M.M., Comparison of HfB2 and ZrB2 behaviors for using in nuclear industry, Ann. Nucl. Energy, 2018, vol. 114, pp. 603–606. https://doi.org/10.1016/j.anucene.2017.12.060

    Article  CAS  Google Scholar 

  8. Sonber, J.K. and Suri, A.K., Synthesis and consolidation of zirconium diboride: review, Adv. Appl. Ceram., 2011, vol. 110, pp. 321–334. https://doi.org/10.1179/1743676111Y.0000000008

    Article  CAS  Google Scholar 

  9. Parthasarathy, T.A., Rapp, R.A., Opeka, M., and Kerans, R.J., A model for transitions in oxidation regimes of ZrB2, Mater. Sci. Forum, 2008, vols. 595–598, pp. 823–832. https://doi.org/10.4028/www.scientific.net/MSF.595-598.823

    Article  Google Scholar 

  10. Parthasarathy, T.A., Rapp, R.A., Opeka, M., and Kerans, R.J., A model for the oxidation of ZrB2, HfB2 and TiB2, Acta Mater., 2007, vol. 55, no. 17, pp. 5999–6010. https://doi.org/10.1016/j.actamat.2007.07.027

    Article  CAS  Google Scholar 

  11. Silvestroni, L., Stricker, K., Sciti, D., and Kleebe, H.-J., Understanding the oxidation behavior of a ZrB2–MoSi2 composite at ultra-high temperatures, Acta Mater., 2018, vol. 151, pp. 216–228. https://doi.org/10.1016/j.actamat.2018.03.042

    Article  CAS  Google Scholar 

  12. Zhang, W., Zeng, Y., Gbologah, L., Xiong, X., and Huang, B., Preparation and oxidation property of ZrB2–MoSi2/SiC coating on carbon/carbon composites, Trans.Nonferrous Met. Soc. China, 2011, vol. 21, no. 7, pp. 1538–1544. https://doi.org/10.1016/S1003-6326(11)60893-5

    Article  CAS  Google Scholar 

  13. Silvestroni, L., Landi, E., Bejtka, K., Chiodoni, A., and Sciti, D., Oxidation behavior and kinetics of ZrB2 containing SiC chopped fibers, J. Eur. Ceram. Soc., 2015, vol. 35, no. 16, pp. 4377–4387. https://doi.org/10.1016/j.jeurceramsoc.2015.07.024

    Article  CAS  Google Scholar 

  14. Poilov, V.Z. and Pryamilova, E.N., Thermodynamics of oxidation of zirconium and hafnium borides, Russ. J. Inorg. Chem, 2016, vol. 61, pp 55–58. https://doi.org/10.1134/S0036023616010198

    Article  CAS  Google Scholar 

  15. Zhang, L., Tong, Z., He, R., Xie, C., Bai, X., Yang, Y., and Fang, D., Key issues of MoSi2-UHTC ceramics for ultra high temperature heating element applications: Mechanical, electrical, oxidation and thermal shock behaviors, J. Alloys Compd., 2019, vol. 780, pp. 156–163. https://doi.org/10.1016/j.jallcom.2018.11.384

    Article  CAS  Google Scholar 

  16. Paul, T.R., Mondal, M.K., and Mallik, M., Dry sliding wear response of ZrB2–20 vol % MoSi2 composite, Mater. Today: Proc., 2018, vol. 5, no. 2, pp. 7174–7183. https://doi.org/10.1016/j.matpr.2017.11.383

    Article  CAS  Google Scholar 

  17. Sciti, D., Brach, M., and Bellosi, A., Long-term oxidation behavior and mechanical strength degradation of a pressurelessly sintered ZrB2–MoSi2 ceramic, Scr. Mater., 2005, vol. 53, no. 11, pp. 1297–1302. https://doi.org/10.1016/j.scriptamat.2005.07.026

    Article  CAS  Google Scholar 

  18. Guo, W.-M., Yang, Z.-G., and Zhang, G.-J., Microstructural evolution of ZrB2–MoSi2 composites during heat treatment, Ceram. Int., 2011, vol. 37, no. 7, pp. 2931–2935. https://doi.org/10.1016/j.ceramint.2011.03.027

    Article  CAS  Google Scholar 

  19. Wang, R. and Li, W., Effects of microstructures and flaw evolution on the fracture strength of ZrB2–MoSi2 composites under high temperatures, J. Alloys Compd., 2015, vol. 644, pp. 582–588. https://doi.org/10.1016/j.jallcom.2015.05.027

    Article  CAS  Google Scholar 

  20. Liu, H.-T., Zou, J., Ni, D.-W., Liu, J.-X., and Zhang, G.-J., Anisotropy oxidation of textured ZrB2–MoSi2 ceramics, J. Eur. Ceram. Soc., 2012, vol. 32, no. 12, pp. 3469–3476. https://doi.org/10.1016/j.jeurceramsoc.2012.03.036

    Article  CAS  Google Scholar 

  21. Chamberlain, A., Fahrenholtz, W., Hilmas, G., and Ellerby, D., Characterization of zirconium diboride-molybdenum disilicide ceramics, Proc. Advances in Ceramic Matrix Composites IX, Nashville, 2004, vol. 153, pp. 299–308. https://doi.org/10.1002/9781118406892.ch20

    Article  Google Scholar 

  22. Lavrenko, V.O., Panasyuk, A.D., Grigorev, O.M., Koroteev, O.V., and Kotenko, V.A., High-temperature (to 1600°C) oxidation of ZrB2–MoSi2 ceramics in air, Powder Metall. Met. Ceram., 2012, vol. 51, pp. 102–107. https://doi.org/10.1007/s11106-012-9403-8

    Article  CAS  Google Scholar 

  23. Silvestroni, L. and Sciti, D., Effects of MoSi2 additions on the properties of Hf– and Zr–B2 composites produced by pressureless sintering, Scr. Mater., 2007, vol. 57, no. 2, pp. 165–168. https://doi.org/10.1016/j.scriptamat.2007.02.040

    Article  CAS  Google Scholar 

  24. Sciti, D., Silvestroni, L., and Nygren, M., Spark plasma sintering of Zr- and Hf-borides with decreasing amounts of MoSi2 as sintering aid, J. Eur. Ceram. Soc., 2008, vol. 28, no. 6, pp. 1287–1296. https://doi.org/10.1016/j.jeurceramsoc.2007.09.043

    Article  CAS  Google Scholar 

  25. Silvestroni, L., Kleebe, H.-J., Lauterbach, S., Müller, M., and Sciti, D., Transmission electron microscopy on Zr- and Hf-borides with MoSi2 addition: Densification mechanisms, J. Mater. Res., 2010, vol. 25, pp. 828–834. https://doi.org/10.1557/JMR.2010.0126

    Article  CAS  Google Scholar 

  26. Sciti, D., Monteverde, F., Guicciardi, S., Pezzotti, G., and Bellosi, A., Microstructure and mechanical properties of ZrB2–MoSi2 ceramic composites produced by different sintering techniques, Mater. Sci. Eng. A, 2006, vol. 434, nos. 1–2, pp. 303–309. https://doi.org/10.1016/j.msea.2006.06.112

    Article  CAS  Google Scholar 

  27. Abdollahi, A., Valefi, Z., and Ehsani, N., Erosion mechanism of ternary-phase SiC/ZrB2–MoSi2–SiC ultra-high temperature multilayer coating under supersonic flame at 90° angle with speed of 1400 m/s (Mach 4), J. Eur. Ceram. Soc., 2020, vol. 40, no. 4, pp. 972–987. https://doi.org/10.1016/j.jeurceramsoc.2019.12.014

    Article  CAS  Google Scholar 

  28. Zhu, L., Zhu, Y., Ren, X., Zhang, P., Qiao, J., and Feng, P., Microstructure, properties and oxidation behavior of MoSi2–MoB–ZrO2 coating for Mo substrate using spark plasma sintering, Surf. Coat. Tech., 2019, vol. 375, pp. 773–781. https://doi.org/10.1016/j.surfcoat.2019.08.002

    Article  CAS  Google Scholar 

  29. Zhu, G., Wang, X., Feng, P., Liu, Z., Niu, J., and Akhtar, F., Synthesis and properties of MoSi2–MoB–SiC ceramics, J. Amer. Ceram. Soc., 2016, vol. 99, no. 4, pp. 1147–1150. https://doi.org/10.1111/jace.14163

    Article  CAS  Google Scholar 

  30. Taleghani, P.R., Bakhshi, S.R., Erfanmanesh, M., Borhani, G.H., and Vafaei, R., Improvement of MoSi2 oxidation resistance via boron addition: Fabrication of MoB/MoSi2 composite by mechanical alloying and subsequent reactive sintering, Powder Technol., 2014, vol. 254, pp. 241–247. https://doi.org/10.1016/j.powtec.2014.01.034

    Article  CAS  Google Scholar 

  31. Potanin, A.Yu., Pogozhev, Yu.S., Levashov, E.A., Novikov, A.V., Shvindina, N.V., and Sviridova T.A., Kinetics and oxidation mechanism of MoSi2–MoB ceramics in the 600–1200°C temperature range, Ceram. Int., 2017, vol. 43, no. 13, pp. 10478–10486. https://doi.org/10.1016/j.ceramint.2017.05.093

    Article  CAS  Google Scholar 

  32. Schneibel, J.H. and Sekhar, J.A., Microstructure and properties of MoSi2–MoB and MoSi2–Mo5Si3 molybdenum silicides, Mater. Sci. Eng. A, 2003, vol. 340, nos. 1–2, pp. 204–211. https://doi.org/10.1016/S0921-5093(02)00193-4

    Article  Google Scholar 

  33. Guicciardi, S., Swarnakar, A.K., Van der Biest, O., and Sciti, D., Temperature dependence of the dynamic Young’s modulus of ZrB2–MoSi2 ultra-refractory ceramic composites, Scr. Mater., 2010, vol. 62, no. 11, pp. 831–834. https://doi.org/10.1016/j.scriptamat.2010.02.011

    Article  CAS  Google Scholar 

  34. Grohsmeyer, R.J., Silvestroni, L., Hilmas, G.E., Monteverde, F., Fahrenholtz, W.G., D’Angió, A., and Sciti, D., ZrB2–MoSi2 ceramics: A comprehensive overview of microstructure and properties relationships. Part I: Processing and microstructure, J. Eur. Ceram. Soc., 2019, vol. 39, no. 6, pp. 1939–1947. https://doi.org/10.1016/j.jeurceramsoc.2019.01.022

    Article  CAS  Google Scholar 

  35. Potanin, A.Yu., Astapov, A.N., Rupasov, S.I., Vorotilo, S., Kochetov, N.A., Kovalev, D.Yu., and Levashov, E.A., Structure and properties of MoSi2–MeB2–SiC (Me = Zr, Hf) ceramics produced by combination of SHS and HP techniques, Ceram. Int., 2020, vol. 46, no. 18, pp. 28725–28734. https://doi.org/10.1016/j.ceramint.2020.08.033

    Article  CAS  Google Scholar 

  36. Vorotilo, S., Levashov, E.A., Kurbatkina, V.V., Kovalev, D.Yu., and Kochetov, N.A., Self-propagating high-temperature synthesis of nanocomposite ceramics TaSi2–SiC with hierarchical structure and superior properties, J. Eur. Ceram. Soc., 2018, vol. 38, no. 2, pp. 433–443. https://doi.org/10.1016/j.jeurceramsoc.2017.08.015

    Article  CAS  Google Scholar 

  37. Vorotilo, S., Levashov, E.A., Petrzhik, M.I., and Kovalev, D.Y., Combustion synthesis of ZrB2–TaB2–TaSi2 ceramics with microgradient grain structure and improved mechanical properties, Ceram. Int., 2019, vol. 45, no. 2, pp. 1503–1512. https://doi.org/10.1016/j.ceramint.2018.10.020

    Article  CAS  Google Scholar 

  38. Iatsyuk, I.V., Pogozhev, Yu.S., Levashov, E.A., Novikov, A.V., Kochetov, N.A., and Kovalev, D.Yu., Combustion synthesis of high-temperature ZrB2–SiC ceramics, J. Eur. Ceram. Soc., 2018, vol. 38, no. 7, pp. 2792–2801. https://doi.org/10.1016/j.jeurceramsoc.2018.02.016

    Article  CAS  Google Scholar 

  39. Borovinskaya, I., Gromov, A., Levachov, E.A., Maksimov, Y., Mukasyan, A., and Rogachev, A.S., Concise encyclopedia of self-propagating high-temperature synthesis: History, theory, technology, and products, Elsevier, 2017.

    Google Scholar 

  40. Cabouro, G., Chevalier, S., Gaffet, E., Rogachev, A.S., Vrel, D., Boudet, N., and Bernard, F., Reaction mechanism for SHS of MoSi2 from mechanically activated powder mixtures, Int. J. Self-Propag. High-Temp. Synth., 2007, vol. 16, pp. 79–86. https://doi.org/10.3103/S1061386207020045

    Article  CAS  Google Scholar 

  41. Monteverde, F., Grohsmeyer, R.J., Stanfield, A.D., Hilmas, G.E., and Fahrenholtz, W.G., Densification behavior of ZrB2–MoSi2 ceramics: The formation and evolution of core-shell solid solution structures, J. Alloys Compd., 2019, vol. 779, pp. 950–961. https://doi.org/10.1016/j.jallcom.2018.11.238

    Article  CAS  Google Scholar 

  42. Vega Farje, J.A., Matsunoshita, H., Kishida, K., and Inui, H., Microstructure and mechanical properties of a MoSi2–Mo5Si3 eutectic composite processed by laser surface melting, Mater. Charact., 2019, vol. 148, pp. 162–170. https://doi.org/10.1016/j.matchar.2018.12.016

    Article  CAS  Google Scholar 

  43. Pogozhev, Yu.S., Potanin, A.Yu, Bashkirov, E.A., Levashov, E.A., Kovalev, D.Yu., and Kochetov, N.A., Self-propagating high-temperature synthesis of the heterophase materials in the Zr–Mo–Si–B system: Kinetics and mechanisms of combustion and structure formation, Rus. J. Non-Ferrous Met., 2022, vol. 63. no. 6, pp. 649–658. https://doi.org/10.3103/S1067821222060116

    Article  Google Scholar 

Download references

ACKNOWLEDGEMENTS

Authors are grateful to Dr. Stepan Vorotilo for his help with thermodynamic calculations and editing the manuscript.

Funding

This work was carried out with financial support from the Russian Science Foundation (project no. 23-49-00141).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Pogozhev.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pogozhev, Y.S., Potanin, A.Y., Rupasov, S.I. et al. Self-Propagating High-Temperature Synthesis and Consolidation of MoSi2–MoB Heterophase Ceramics Alloyed with ZrB2. Int. J Self-Propag. High-Temp. Synth. 32, 221–232 (2023). https://doi.org/10.3103/S106138622303007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106138622303007X

Keywords:

Navigation