Abstract
In this study, we investigate the self-propagating high-temperature synthesis (SHS) and consolidation of heterophase MoSi2–MoB ceramics alloyed with ZrB2. A thermodynamic analysis of the combustion temperature (Tad) and the equilibrium composition of synthesis products was performed for the Zr–Mo–Si–B system. The effect of varying Zr and B concentrations on combustion kinetics was studied in detail. The resulting heterophase SHS powders showed high structural and chemical homogeneity, though were noticeably agglomerated. We identified optimal consolidation conditions and achieved compact ceramics with a phase composition identical to the original SHS powder. The ceramic structure consists of a matrix of MoSi2 grains with interspersed needle-like ZrB2 grains and polyhedral inclusions of MoB. This work establishes a basis for the preparation of MoSi2–MoB–ZrB2 ceramics with excellent hardness, fracture toughness, thermal conductivity, and high-temperature oxidation resistance.
Similar content being viewed by others
REFERENCES
Sani, E., Mercatelli, L., Meucci, M., Balbo, A., Musa, C., Licheri, R., Orrù, R., and Cao, G., Optical properties of dense zirconium and tantalum diborides for solar thermal absorbers, Renew. Energ., 2016, vol. 91, pp. 340–346. https://doi.org/10.1016/j.renene.2016.01.068
Fahrenholtz, W.G. and Hilmas, G.E., Ultra-high temperature ceramics: Materials for extreme environments, Scr. Mater., 2017, vol. 129, pp. 94–99. https://doi.org/10.1016/j.scriptamat.2016.10.018
Bertin, J.J. and Johnson, S.W., Access to space-systems and technologies to support it, J. Aerosp. Eng., 1997, vol. 10, no. 2, pp. 53–59. https://doi.org/10.1061/(ASCE)0893-1321(1997)10:2(53)
Vorotilo, S., Potanin, A.Yu., Pogozhev, Yu.S., Levashov, E.A., Kochetov, N.A., and Kovalev, D.Yu., Self-propagating high-temperature synthesis of advanced ceramics MoSi2–HfB2–MoB, Ceram, Int, 2019, vol. 45, no. 1, pp. 96–107. https://doi.org/10.1016/j.ceramint.2018.09.138
Wuchina, E., Opila, E., Opeka, M., Fahrenholtz, W.G., and Talmy, I., UHTCs: ultra-high temperature ceramic materials for extreme environment applications, Electrochem. Soc. Interf., 2007, vol. 16, pp. 30-36. https://doi.org/10.1149/2.F04074IF
Sonber, J.K., Murthy, T.S.R.Ch., Subramanian, C., Kumar, S., Fotedar, R.K., and Suri, A.K., Investigations on synthesis of ZrB2 and development of new composites with HfB2 and TiSi2, Int. J. Refract. Met. Hard Mater., 2011, vol. 29, no. 1, pp. 21–30. https://doi.org/10.1016/j.ijrmhm.2010.06.007
Nasseri, M.M., Comparison of HfB2 and ZrB2 behaviors for using in nuclear industry, Ann. Nucl. Energy, 2018, vol. 114, pp. 603–606. https://doi.org/10.1016/j.anucene.2017.12.060
Sonber, J.K. and Suri, A.K., Synthesis and consolidation of zirconium diboride: review, Adv. Appl. Ceram., 2011, vol. 110, pp. 321–334. https://doi.org/10.1179/1743676111Y.0000000008
Parthasarathy, T.A., Rapp, R.A., Opeka, M., and Kerans, R.J., A model for transitions in oxidation regimes of ZrB2, Mater. Sci. Forum, 2008, vols. 595–598, pp. 823–832. https://doi.org/10.4028/www.scientific.net/MSF.595-598.823
Parthasarathy, T.A., Rapp, R.A., Opeka, M., and Kerans, R.J., A model for the oxidation of ZrB2, HfB2 and TiB2, Acta Mater., 2007, vol. 55, no. 17, pp. 5999–6010. https://doi.org/10.1016/j.actamat.2007.07.027
Silvestroni, L., Stricker, K., Sciti, D., and Kleebe, H.-J., Understanding the oxidation behavior of a ZrB2–MoSi2 composite at ultra-high temperatures, Acta Mater., 2018, vol. 151, pp. 216–228. https://doi.org/10.1016/j.actamat.2018.03.042
Zhang, W., Zeng, Y., Gbologah, L., Xiong, X., and Huang, B., Preparation and oxidation property of ZrB2–MoSi2/SiC coating on carbon/carbon composites, Trans.Nonferrous Met. Soc. China, 2011, vol. 21, no. 7, pp. 1538–1544. https://doi.org/10.1016/S1003-6326(11)60893-5
Silvestroni, L., Landi, E., Bejtka, K., Chiodoni, A., and Sciti, D., Oxidation behavior and kinetics of ZrB2 containing SiC chopped fibers, J. Eur. Ceram. Soc., 2015, vol. 35, no. 16, pp. 4377–4387. https://doi.org/10.1016/j.jeurceramsoc.2015.07.024
Poilov, V.Z. and Pryamilova, E.N., Thermodynamics of oxidation of zirconium and hafnium borides, Russ. J. Inorg. Chem, 2016, vol. 61, pp 55–58. https://doi.org/10.1134/S0036023616010198
Zhang, L., Tong, Z., He, R., Xie, C., Bai, X., Yang, Y., and Fang, D., Key issues of MoSi2-UHTC ceramics for ultra high temperature heating element applications: Mechanical, electrical, oxidation and thermal shock behaviors, J. Alloys Compd., 2019, vol. 780, pp. 156–163. https://doi.org/10.1016/j.jallcom.2018.11.384
Paul, T.R., Mondal, M.K., and Mallik, M., Dry sliding wear response of ZrB2–20 vol % MoSi2 composite, Mater. Today: Proc., 2018, vol. 5, no. 2, pp. 7174–7183. https://doi.org/10.1016/j.matpr.2017.11.383
Sciti, D., Brach, M., and Bellosi, A., Long-term oxidation behavior and mechanical strength degradation of a pressurelessly sintered ZrB2–MoSi2 ceramic, Scr. Mater., 2005, vol. 53, no. 11, pp. 1297–1302. https://doi.org/10.1016/j.scriptamat.2005.07.026
Guo, W.-M., Yang, Z.-G., and Zhang, G.-J., Microstructural evolution of ZrB2–MoSi2 composites during heat treatment, Ceram. Int., 2011, vol. 37, no. 7, pp. 2931–2935. https://doi.org/10.1016/j.ceramint.2011.03.027
Wang, R. and Li, W., Effects of microstructures and flaw evolution on the fracture strength of ZrB2–MoSi2 composites under high temperatures, J. Alloys Compd., 2015, vol. 644, pp. 582–588. https://doi.org/10.1016/j.jallcom.2015.05.027
Liu, H.-T., Zou, J., Ni, D.-W., Liu, J.-X., and Zhang, G.-J., Anisotropy oxidation of textured ZrB2–MoSi2 ceramics, J. Eur. Ceram. Soc., 2012, vol. 32, no. 12, pp. 3469–3476. https://doi.org/10.1016/j.jeurceramsoc.2012.03.036
Chamberlain, A., Fahrenholtz, W., Hilmas, G., and Ellerby, D., Characterization of zirconium diboride-molybdenum disilicide ceramics, Proc. Advances in Ceramic Matrix Composites IX, Nashville, 2004, vol. 153, pp. 299–308. https://doi.org/10.1002/9781118406892.ch20
Lavrenko, V.O., Panasyuk, A.D., Grigorev, O.M., Koroteev, O.V., and Kotenko, V.A., High-temperature (to 1600°C) oxidation of ZrB2–MoSi2 ceramics in air, Powder Metall. Met. Ceram., 2012, vol. 51, pp. 102–107. https://doi.org/10.1007/s11106-012-9403-8
Silvestroni, L. and Sciti, D., Effects of MoSi2 additions on the properties of Hf– and Zr–B2 composites produced by pressureless sintering, Scr. Mater., 2007, vol. 57, no. 2, pp. 165–168. https://doi.org/10.1016/j.scriptamat.2007.02.040
Sciti, D., Silvestroni, L., and Nygren, M., Spark plasma sintering of Zr- and Hf-borides with decreasing amounts of MoSi2 as sintering aid, J. Eur. Ceram. Soc., 2008, vol. 28, no. 6, pp. 1287–1296. https://doi.org/10.1016/j.jeurceramsoc.2007.09.043
Silvestroni, L., Kleebe, H.-J., Lauterbach, S., Müller, M., and Sciti, D., Transmission electron microscopy on Zr- and Hf-borides with MoSi2 addition: Densification mechanisms, J. Mater. Res., 2010, vol. 25, pp. 828–834. https://doi.org/10.1557/JMR.2010.0126
Sciti, D., Monteverde, F., Guicciardi, S., Pezzotti, G., and Bellosi, A., Microstructure and mechanical properties of ZrB2–MoSi2 ceramic composites produced by different sintering techniques, Mater. Sci. Eng. A, 2006, vol. 434, nos. 1–2, pp. 303–309. https://doi.org/10.1016/j.msea.2006.06.112
Abdollahi, A., Valefi, Z., and Ehsani, N., Erosion mechanism of ternary-phase SiC/ZrB2–MoSi2–SiC ultra-high temperature multilayer coating under supersonic flame at 90° angle with speed of 1400 m/s (Mach 4), J. Eur. Ceram. Soc., 2020, vol. 40, no. 4, pp. 972–987. https://doi.org/10.1016/j.jeurceramsoc.2019.12.014
Zhu, L., Zhu, Y., Ren, X., Zhang, P., Qiao, J., and Feng, P., Microstructure, properties and oxidation behavior of MoSi2–MoB–ZrO2 coating for Mo substrate using spark plasma sintering, Surf. Coat. Tech., 2019, vol. 375, pp. 773–781. https://doi.org/10.1016/j.surfcoat.2019.08.002
Zhu, G., Wang, X., Feng, P., Liu, Z., Niu, J., and Akhtar, F., Synthesis and properties of MoSi2–MoB–SiC ceramics, J. Amer. Ceram. Soc., 2016, vol. 99, no. 4, pp. 1147–1150. https://doi.org/10.1111/jace.14163
Taleghani, P.R., Bakhshi, S.R., Erfanmanesh, M., Borhani, G.H., and Vafaei, R., Improvement of MoSi2 oxidation resistance via boron addition: Fabrication of MoB/MoSi2 composite by mechanical alloying and subsequent reactive sintering, Powder Technol., 2014, vol. 254, pp. 241–247. https://doi.org/10.1016/j.powtec.2014.01.034
Potanin, A.Yu., Pogozhev, Yu.S., Levashov, E.A., Novikov, A.V., Shvindina, N.V., and Sviridova T.A., Kinetics and oxidation mechanism of MoSi2–MoB ceramics in the 600–1200°C temperature range, Ceram. Int., 2017, vol. 43, no. 13, pp. 10478–10486. https://doi.org/10.1016/j.ceramint.2017.05.093
Schneibel, J.H. and Sekhar, J.A., Microstructure and properties of MoSi2–MoB and MoSi2–Mo5Si3 molybdenum silicides, Mater. Sci. Eng. A, 2003, vol. 340, nos. 1–2, pp. 204–211. https://doi.org/10.1016/S0921-5093(02)00193-4
Guicciardi, S., Swarnakar, A.K., Van der Biest, O., and Sciti, D., Temperature dependence of the dynamic Young’s modulus of ZrB2–MoSi2 ultra-refractory ceramic composites, Scr. Mater., 2010, vol. 62, no. 11, pp. 831–834. https://doi.org/10.1016/j.scriptamat.2010.02.011
Grohsmeyer, R.J., Silvestroni, L., Hilmas, G.E., Monteverde, F., Fahrenholtz, W.G., D’Angió, A., and Sciti, D., ZrB2–MoSi2 ceramics: A comprehensive overview of microstructure and properties relationships. Part I: Processing and microstructure, J. Eur. Ceram. Soc., 2019, vol. 39, no. 6, pp. 1939–1947. https://doi.org/10.1016/j.jeurceramsoc.2019.01.022
Potanin, A.Yu., Astapov, A.N., Rupasov, S.I., Vorotilo, S., Kochetov, N.A., Kovalev, D.Yu., and Levashov, E.A., Structure and properties of MoSi2–MeB2–SiC (Me = Zr, Hf) ceramics produced by combination of SHS and HP techniques, Ceram. Int., 2020, vol. 46, no. 18, pp. 28725–28734. https://doi.org/10.1016/j.ceramint.2020.08.033
Vorotilo, S., Levashov, E.A., Kurbatkina, V.V., Kovalev, D.Yu., and Kochetov, N.A., Self-propagating high-temperature synthesis of nanocomposite ceramics TaSi2–SiC with hierarchical structure and superior properties, J. Eur. Ceram. Soc., 2018, vol. 38, no. 2, pp. 433–443. https://doi.org/10.1016/j.jeurceramsoc.2017.08.015
Vorotilo, S., Levashov, E.A., Petrzhik, M.I., and Kovalev, D.Y., Combustion synthesis of ZrB2–TaB2–TaSi2 ceramics with microgradient grain structure and improved mechanical properties, Ceram. Int., 2019, vol. 45, no. 2, pp. 1503–1512. https://doi.org/10.1016/j.ceramint.2018.10.020
Iatsyuk, I.V., Pogozhev, Yu.S., Levashov, E.A., Novikov, A.V., Kochetov, N.A., and Kovalev, D.Yu., Combustion synthesis of high-temperature ZrB2–SiC ceramics, J. Eur. Ceram. Soc., 2018, vol. 38, no. 7, pp. 2792–2801. https://doi.org/10.1016/j.jeurceramsoc.2018.02.016
Borovinskaya, I., Gromov, A., Levachov, E.A., Maksimov, Y., Mukasyan, A., and Rogachev, A.S., Concise encyclopedia of self-propagating high-temperature synthesis: History, theory, technology, and products, Elsevier, 2017.
Cabouro, G., Chevalier, S., Gaffet, E., Rogachev, A.S., Vrel, D., Boudet, N., and Bernard, F., Reaction mechanism for SHS of MoSi2 from mechanically activated powder mixtures, Int. J. Self-Propag. High-Temp. Synth., 2007, vol. 16, pp. 79–86. https://doi.org/10.3103/S1061386207020045
Monteverde, F., Grohsmeyer, R.J., Stanfield, A.D., Hilmas, G.E., and Fahrenholtz, W.G., Densification behavior of ZrB2–MoSi2 ceramics: The formation and evolution of core-shell solid solution structures, J. Alloys Compd., 2019, vol. 779, pp. 950–961. https://doi.org/10.1016/j.jallcom.2018.11.238
Vega Farje, J.A., Matsunoshita, H., Kishida, K., and Inui, H., Microstructure and mechanical properties of a MoSi2–Mo5Si3 eutectic composite processed by laser surface melting, Mater. Charact., 2019, vol. 148, pp. 162–170. https://doi.org/10.1016/j.matchar.2018.12.016
Pogozhev, Yu.S., Potanin, A.Yu, Bashkirov, E.A., Levashov, E.A., Kovalev, D.Yu., and Kochetov, N.A., Self-propagating high-temperature synthesis of the heterophase materials in the Zr–Mo–Si–B system: Kinetics and mechanisms of combustion and structure formation, Rus. J. Non-Ferrous Met., 2022, vol. 63. no. 6, pp. 649–658. https://doi.org/10.3103/S1067821222060116
ACKNOWLEDGEMENTS
Authors are grateful to Dr. Stepan Vorotilo for his help with thermodynamic calculations and editing the manuscript.
Funding
This work was carried out with financial support from the Russian Science Foundation (project no. 23-49-00141).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The authors declare that they have no conflicts of interest.
About this article
Cite this article
Pogozhev, Y.S., Potanin, A.Y., Rupasov, S.I. et al. Self-Propagating High-Temperature Synthesis and Consolidation of MoSi2–MoB Heterophase Ceramics Alloyed with ZrB2. Int. J Self-Propag. High-Temp. Synth. 32, 221–232 (2023). https://doi.org/10.3103/S106138622303007X
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.3103/S106138622303007X