Skip to main content
Log in

Low-Temperature Combustion Synthesis and Characterization of Co-Containing Catalysts Based on Modified Silica Gel

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Low-temperature combustion synthesis was used both for modifying silica gel support with 10 and 20 wt % Al2O3 and for producing supported catalysts with 10 wt % of Co active phase. Prepared catalysts were characterized by XRD, SEM, EDS, and BET method. It was revealed that these catalysts contain oxides, aluminates, and silicates of cobalt. It was shown that modification of support noticeably reduces its specific surface, while its calcination decreases the catalyst activity. The catalysts synthesized from supports with lower content of Al2O3 demonstrated higher specific surface and lower activity in deep oxidation of propane and CO. The catalyst on an uncalcinated support modified with 20 wt % Al2O3 was found to possess the highest activity in the process of deep oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Zav’yalova, U.F., Tret’yakov, V.F., Burdeinaya, T.N., Lunin, V.V., Shitova, N.B., Ryzhova, N.D., Shmakov, A.N., Nizovskii, A.I., and Tsyrul’nikov, P.G., Self-propagating synthesis of supported oxide catalysts for deep oxidation of CO and hydrocarbons, Kinet. Catal., 2005, vol. 46, no. 5, pp. 752–757. https://doi.org/10.1007/s10975-005-0132-6

    Article  CAS  Google Scholar 

  2. Zavyalova, U., Scholz, P., and Ondruschka, B., Influence of cobalt precursor and fuels on the performance of combustion synthesized Co3O4/γ-Al2O3 catalysts for total oxidation of methane, Appl. Catal. A, 2007, vol. 323, pp. 226–233. https://doi.org/10.1016/j.apcata.2007.02.0216

    Article  CAS  Google Scholar 

  3. Afonasenko, T.N., Shlyapin, D.A., Leont’eva, N.N., Gulyaeva, T.I., Buyal’skaya, K.S., Trenikhin, M.V., and Tsyrul’nikov, P.G., Selective oxidation of carbon monoxide in hydrogen-containing gas on CuO–CeO2/Al2O3 catalysts prepared by surface self-propagating thermal synthesis, Kinet. Catal., 2011, vol. 52, no. 6, pp. 843–850. https://doi.org/10.1134/S0023158411060012

    Article  CAS  Google Scholar 

  4. Mironenko, O.O., Shitova, N.B., Kotolevich, Y.S., Sharafutdinov, M.R., Struikhina, N.O, Smirnova, N.S., Kochubey, D.I., Protasova, O.V., Trenikhin, M.V., Stonkus, O.A., Zaikovskii, V.I., Goncharov, V.B., and Tsyrul’nikov, P.G., Pd/fiber glass and Pd/5% γ-Al2O3/fiber glass catalysts by surface self-propagating thermal synthesis, Int. J. Self-Propag. High-Temp. Synth., 2012, vol. 21, no. 2, pp. 139–145. https://doi.org/10.3103/S1061386212020082

    Article  CAS  Google Scholar 

  5. Kotolevich, Y.S., Khramov, E.V., Mironenko, O.O., Zubavichus, Ya.V., Murzin, V.Yu., Frey, D.I., Metelev, S.E., Shitova, N.B., and Tsyrulnikov, P.G., Supported palladium catalysts prepared by surface self-propagating thermal synthesis, Int. J. Self-Propag. High-Temp. Synth., 2014, vol. 23, no. 1, pp. 9–17. https://doi.org/10.3103/S1061386214010075

    Article  CAS  Google Scholar 

  6. Kotolevich, Y.S., Mamontov, G.V., Vodyankina, O.V., Petrova, N.I., Smirnova, N.S., Tsyryul’nikov, P.G., Trenikhin, M.V., Nizovskii, A.I., Kalinkin, A.V., Smirnov, M.Y., and Goncharov, V.B., Catalytic Pd–Ag nanoparticles immobilized on fiber glass by surface self-propagating thermal synthesis, Int. J. Self-Propag. High-Temp. Synth., 2017, vol. 26, no. 4, pp. 234–239. https://doi.org/10.3103/S1061386217040045

    Article  CAS  Google Scholar 

  7. Borshch, V.N., Dement’eva, I.M., and Khomenko, N.Yu., Supported polymetallic catalysts by self-propagating surface synthesis, Int. J. Self-Propag. High-Temp. Synth., 2019, vol. 28, no. 1, pp. 45–49. https://doi.org/10.3103/S1061386219010059

    Article  CAS  Google Scholar 

  8. Xie, X., Li, Y., Liu, Z.Q., Haruta, M., and Shen, W., Low-temperature oxidation of CO catalysed by Co3O4 nanorods, Nature, 2009, vol. 458, pp. 746–749. https://doi.org/10.1038/nature07877

    Article  CAS  Google Scholar 

  9. Lima, T.M., Castelblanco, W.N., Rodrigues, A.D., Roncolatto, R.E., Martins, L., and Urquieta-Gonzále, E.A., CO oxidation over Co-catalysts supported on silica-titania – The effects of the catalyst preparation method and the amount of incorporated Ti on the formation of more active Co3+ species, Appl. Catal. A Gen., 2018, vol. 565, pp. 152–162. https://doi.org/10.1016/j.apcata.2018.08.006

    Article  CAS  Google Scholar 

  10. Nyathi, T.M., Fischer, N., York, A.P.E., Morgan, D.J., Hutchings, G.J., Gibson, E.K., Wells, P.P., Catlow, C.R.A., and Claeys, M., Impact of nanoparticle-support interactions in Co3O4/Al2O3 catalysts for the preferential oxidation of carbon monoxide, ACS Catal., 2019, vol. 9, pp. 7166–7178. https://doi.org/10.1021/acscatal.9b00685

    Article  CAS  Google Scholar 

  11. Zasada, F., Grybos, J., Budiyanto, E., Janas, J., and Sojka, Z., Oxygen species stabilized on the cobalt spinel nano-octahedra at various reaction conditions and their role in catalytic CO and CH4 oxidation, N2O decomposition and oxygen isotopic exchange, J. Catal., 2019, vol. 371, pp. 224–235. https://doi.org/10.1016/j.jcat.2019.02.010

    Article  CAS  Google Scholar 

  12. Ma, L., Seo, C.Y., Chen, X., Sun, K., and Schwank, J.W., Indium-doped Co3O4 nanorods for catalytic oxidation of CO and C3H6 towards diesel exhaust, Appl. Catal. B Environ., 2018, vol. 222, pp. 44–58. https://doi.org/10.1016/j.apcatb.2017.10.001

    Article  CAS  Google Scholar 

  13. Faure, B. and Alphonse, P., Co–Mn-oxide spinel catalysts for CO and propane oxidation at mild temperature, Appl. Catal. B Environ., 2016, vol. 180, pp. 715–725. https://doi.org/10.1016/j.apcatb.2015.07.019

    Article  CAS  Google Scholar 

  14. Wang, T., Zhang, C., Wang, J., Li, H., Duan, Y., Liu, Z., Lee, J.Y., Hu, X., Xi, S., Du, Y., Sun, S., Liu, X., Lee, J.-M., Wang, C., and Xu, Z.J., The interplay between the suprafacial and intrafacial mechanisms for complete methane oxidation on substituted LaCoO3 perovskite oxides, J. Catal., 2020, vol. 390, pp. 1–11. https://doi.org/10.1016/j.jcat.2020.07.007

    Article  CAS  Google Scholar 

  15. Wang, S., Chu, P., Liu, J., Wang, C., Duan, E., Deng, J., and Hou, L., Amino acid-deep eutectic solvents/LaCoO3 mutualism system: Forming La–Co–C–O hybrid for low temperature methane catalytic oxidation, Fuel, 2022, vol. 316, p. 123358. https://doi.org/10.1016/j.fuel.2022.123358

    Article  CAS  Google Scholar 

  16. Liang, S., Cai, T., Yuan, J., Tong, Q., and Hu, X., Promoting effect of reduction-oxidation strategy on the Co3O4/γ-Al2O3 catalysts for propane total oxidation, Mol. Catal., 2022, vol. 533, p. 112762. https://doi.org/10.1016/j.mcat.2022.112762

    Article  CAS  Google Scholar 

  17. Feng, C., Gao, Q., Xiong, G., Chen, Y., Pan, Y., Fei, Z., Li, Y., Lu, Y., Liu, C., and Liu, Y., Defect engineering technique for the fabrication of LaCoO3 perovskite catalyst via urea treatment for total oxidation of propane, Appl. Catal. B Environ., 2022, vol. 304, p. 121005. https://doi.org/10.1016/j.apcatb.2021.121005

    Article  CAS  Google Scholar 

  18. Zhu, W., Wang, X., Li, C., Chen, X., Li, W., Liu, Z., and Liang, C., Defect engineering over Co3O4 catalyst for surface lattice oxygen activation and boosted propane total oxidation, J. Catal., 2022, vol. 413, pp. 150–162. https://doi.org/10.1016/j.jcat.2022.06.024

    Article  CAS  Google Scholar 

  19. Zhang, X., Ye, J., Yuan, J., Cai, T., Xiao, B., Liu, Z., Zhao, K., Yang, L., and He, D., Excellent low-temperature catalytic performance of nanosheet Co–Mn oxides for total benzene oxidation, Appl. Catal. A Gen., 2018, vol. 566, pp. 104–112. https://doi.org/10.1016/j.apcata.2018.05.039

    Article  CAS  Google Scholar 

  20. Cheng, Z., Chen, Z., Li, J., Zuo, S., and Yang, P., Mesoporous silica-pillared clays supported nanosized Co3O4–CeO2 for catalytic combustion of toluene, Appl. Surf. Sci., 2018, vol. 459, pp. 32–39. https://doi.org/10.1016/j.apsusc.2018.07.203

    Article  CAS  Google Scholar 

  21. Zhao, H., Wang, H., and Qu, Z., Synergistic effects in Mn–Co mixed oxide supported on cordierite honeycomb for catalytic deep oxidation of VOCs, J. Environ. Sci., 2022, vol.112, pp. 231–243. https://doi.org/10.1016/j.jes.2021.05.003

    Article  CAS  Google Scholar 

  22. Dong, F., Han, W., Han, W., and Tang, Z., Assembling core-shell SiO2@NiaCobOx nanotube decorated by hierarchical NiCo–Phyllisilicate ultrathin nanosheets for highly efficient catalytic combustion of VOCs, Appl. Catal B Environ., 2022, vol. 315, p. 121524. https://doi.org/10.1016/j.apcatb.2022.121524

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Borshch.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Golosova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borshch, V.N., Bystrova, I.M., Boyarchenko, O.D. et al. Low-Temperature Combustion Synthesis and Characterization of Co-Containing Catalysts Based on Modified Silica Gel. Int. J Self-Propag. High-Temp. Synth. 32, 126–138 (2023). https://doi.org/10.3103/S1061386223020024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386223020024

Keywords:

Navigation