Skip to main content
Log in

Explanation of Increase in Combustion Velocity of Ti + C Powder Mixture upon Dilution with Nickel Using Convective–Conductive Combustion Model

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

For the first time, a comparative study of the macrokinetic combustion parameters for granular and powder Ti + C and (Ti + C) + 20% Ni mixtures with variation in Ti particle sizes from 31 to 142 µm was carried out. It was found that the combustion velocity of (Ti + C) + 20% Ni powder mixture is 2–3 times higher than that of Ti + C mixture, in spite of the lower combustion temperature. The data obtained contradict theoretical concepts about the dependence of the combustion velocity on the maximum temperature, which leads to a formal negative value of the activation energy of combustion. In the convective–conductive model of combustion, these unusual results are explained by the strong effect of impurity gas release on the combustion velocity. For Ti + C and (Ti + C) + 20% Ni compositions, the conditions for heating particles of powder mixtures in the combustion wave warm-up zone were experimentally confirmed. The values of the reaction front velocity inside the granules were calculated using values of combustion velocities of samples with granules 0.6–1.7 mm in diameter for different sizes of Ti particles. They turned out to be several times higher than combustion velocities of powder mixtures with the same composition. The ratio of the values of the combustion velocity of the substance of the granules to the burning front velocity in the powder mixture can serve as a quantitative measure of the effect of the release of impurity gases on the burning velocity of powder mixtures. For both mixture compositions, the same power function ~d–0.9 approximates dependences of the combustion velocity inside the granules on the Ti particle size, which indicates the leading role of the Ti + C reaction in the propagation of the combustion wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Rogachev, A.S. and Mukasyan, A.S., Combustion for Material Synthesis, New York: CRC Press Taylor & Francis Group, 2015.

    Google Scholar 

  2. Han, J.-C., Zhang, X.-H., and Wood, J.V., In-situ combustion synthesis and densification of TiC–xNi cermets, Mater. Sci. Eng. A, 2000, vol. 280, pp. 328–333. https://doi.org/10.1016/S0921-5093(99)00606-1

    Article  Google Scholar 

  3. Huang, L., Wang, H.Y., Qiu, F., and Jiang, Q.C., Synthesis of dense ceramic particulate reinforced composites from Ni–Ti–C, Ni–Ti–B, Ni–Ti–B4C, and Ni–Ti–C–B systems via the SHS reaction, arc melting and suction casting, Mater. Sci. Eng. A, 2006, vol. 422, pp. 309–315. https://doi.org/10.1016/j.msea.2006.02.019

    Article  CAS  Google Scholar 

  4. Li, Y., Bai, P., Wang, Y., Hu, J., and Guo, Z., Effect of TiC content on Ni/TiC composites by direct laser fabrication, Mater. Des., 2009, vol. 30, pp. 1409–1412. https://doi.org/10.1016/j.matdes.2008.06.046

    Article  CAS  Google Scholar 

  5. Liu, G., Li, J., and Chen, K., Combustion synthesis of refractory and hard materials: A review, Int. J. Refr. Met. Hard Mater., 2013, vol. 39, pp. 90–102. https://doi.org/10.1016/j.ijrmhm.2012.09.002

    Article  CAS  Google Scholar 

  6. André, B., Levin, E., Jansson, U., and Wiklund, U., Friction and contact resistance of nanocomposite Ti–Ni–C coatings, Wear, 2011, vol. 270, pp. 555–566. https://doi.org/10.1016/j.wear.2010.12.006

    Article  CAS  Google Scholar 

  7. Kiryukhantsev-Korneev, P., Sytchenko, A., Sheveyko, A., and Vorotilo, S., Structure and properties of protective coatings deposited by pulsed cathodic arc evaporation in Ar, N2, and C2H4 environments using the TiC–NiCr–Eu2O3 cathode, Coatings, 2019, vol. 9, pp. 230–243. https://doi.org/10.3390/coatings9040230

    Article  CAS  Google Scholar 

  8. Sahoo, C.K. and Masanta, M., Microstructure and mechanical properties of TiC–Ni coating on AISI304 steel produced by TIG cladding process, J. Mater. Process. Technol., 2017, vol. 240, pp. 126–137. https://doi.org/10.1016/j.jmatprotec.2016.09.018

    Article  CAS  Google Scholar 

  9. Merzhanov, A.G., Solid flames: discovery, concepts, and horizon of cognition, Combust. Sci. Technol., 1994, vol. 98, pp. 307–336. https://doi.org/10.1080/00102209408935417

    Article  CAS  Google Scholar 

  10. Vershinnikov, V.I. and Filonenko, A.K., Pressure dependence of rate of gas-free combustion, Combust. Explos. Shock Waves, 1978, vol. 14, pp. 588–592.

    Article  Google Scholar 

  11. Dunmead, S.D., Readey, D.W., and Semler, C.E., Kinetics of combustion synthesis in the Ti–C and Ti–C–Ni systems, J. Amer. Ceram. Soc.,1989, vol. 72, pp. 2318–2324. https://doi.org/10.1111/j.1151-2916.1989.tb06083.x

    Article  CAS  Google Scholar 

  12. Varma, A., Rogachev, A.S., Mukasyan, A.S., and Hwang, S., Combustion synthesis of advanced materials: principles and applications, Adv. Chem. Eng., 1998, vol. 24, pp. 79–226. https://doi.org/10.1016/S0065-2377(08)60093-9

    Article  CAS  Google Scholar 

  13. Rogachev, A.S., Microkinetics of gasless combustion: old problems and new approaches, Int. J. Self-Propag. High-Temp. Synth., 1997, vol. 6, pp. 215–240.

    CAS  Google Scholar 

  14. Aldushin, A.P., Martem’yanova, T.M., Merzhanov, A.G., Khaikin, B.I., and Shkadinskii, K.G., Propagation of the front of an exothermic reaction in condensed mixtures with the interaction of the components through a layer of high-melting product, Combust. Explos. Shock Waves, 1972, vol. 8, vol. 159–167.

    Book  Google Scholar 

  15. Azatyan, T.S., Mal’tsev, V.M., Merzhanov, A.G., and Seleznev, V.A., Spectral-optical investigation of the mechanism of the combustion of mixtures of titanium and carbon, Combust. Explos. Shock Waves, 1977, vol. 13, pp. 156–158. https://doi.org/10.1007/BF00754993

    Article  Google Scholar 

  16. Kachelmayer, C.L., Varma, A., Rogachev, A.S., and Sytschev, A.E., Influence of reaction mixture porosity on the effective kinetics of combustion synthesis, Ind. Eng. Chem. Res.,1988, vol. 37, pp. 2246–2249. https://doi.org/10.1021/ie9704915

    Article  Google Scholar 

  17. Shcherbakov, V.A., Sytschev, A.E., and Shteinberg, A.S., Outgassing macrokinetcs in SPS, Combust. Explos. Shock Waves, 1986, vol. 22, pp. 437–443. https://doi.org/10.1007/BF00862888

    Article  Google Scholar 

  18. Merzhanov, A.G., Rogachev, A.S., Umarov, L.M., and Kir’yakov, N.V., Experimental study of the gas phase formed in the processes of self-propagating high-temperature synthesis, Combust. Explos. Shock Waves, 1997, vol. 33, pp. 439–447. https://doi.org/10.1007/BF02671837

    Article  Google Scholar 

  19. Mukas'yan, A.S., Shugaev, V.A., and Kir’yakov, N.V., Effect of gaseous fluid phases on combustion of metals in nitrogen, Combust. Explos. Shock Waves, 1993, vol. 29, pp. 7–11. https://doi.org/10.1007/BF00755319

    Article  Google Scholar 

  20. Kamynina, O.K., Rogachev, A.S., and Umarov, L.M., Deformation dynamics of a reactive medium during gasless combustion, Combust. Explos. Shock Waves, 2003, vol. 39, pp. 548–551. https://doi.org/10.1023/A:1026161818701

    Article  Google Scholar 

  21. Seplyarskii, B.S. and Vadchenko, S.G., Role of convective heat transfer in gasless combustion by the example of combustion of the Ti–C system, Dokl. Phys. Chem., 2004, vol. 398, pp. 203–207. https://doi.org/10.1023/B:DOPC.0000041487.87644.26

    Article  CAS  Google Scholar 

  22. Vadchenko, S.G., Effect of thermal treatment in vacuum on ignition of titanium compacts in hydrogen, Int. J. Self-Propag. High-Temp. Synth., 2010, vol. 19, pp. 206–208. https://doi.org/10.3103/S1061386210030064

    Article  CAS  Google Scholar 

  23. Seplyarskii, B.S., The nature of the anomalous dependence of the velocity of combustion of “gasless” systems on the sample diameter, Dokl. Phys. Chem., 2004, vol. 396, pp. 130–133. https://doi.org/10.1023/B:DOPC.0000033505.34075.0a

    Article  CAS  Google Scholar 

  24. Rubtsov, N.M., Seplyarskii, B.S., and Alymov, M.I., Ignition and Wave Processes in Combustion of Solids, Cham, Switzerland: Springer International Publishing AG, 2017.

    Book  Google Scholar 

  25. Seplyarskii, B.S. and Kochetkov, R.A., Granulation as a tool for stabilization of SHS reactions, Int. J. Self-Propag. High-Temp. Synth., 2017, vol. 26, pp. 134–136. https://doi.org/10.3103/S106138621702011X

    Article  Google Scholar 

  26. Amosov, A.P., Makarenko, A.G., Samboruk, A.R., Seplyarskii, B.S., Samboruk, A.A., Gerasimov, I.O., Orlov, A.V., and Yatsenko, V.V., Effect of batch pelletizing on a course of SHS reactions: An overview, Int. J. Self-Propag. High-Temp. Synth., 2010, vol. 19, pp. 70–77. https://doi.org/10.3103/S1061386210010127

    Article  CAS  Google Scholar 

  27. Seplyarskii, B.S. and Kochetkov, R.A., A study of the characteristics of the combustion of Ti + xC (x > 0.5) powder and granular compositions in a gas coflow, Russ. J. Phys. Chem. B, 2017, vol. 11, pp. 798–807. https://doi.org/10.1134/S1990793117050116

    Article  CAS  Google Scholar 

  28. Seplyarsky, B.S., Kochetkov, R.A., Lisina, T.G., Abzalov, N.I., and Alymov, M.I., Phase composition and structure of titanium carbide/nickel binder synthesis products, Inorg. Mater., 2019, vol. 55, pp. 1104–1110. https://doi.org/10.1134/S0020168519110116

    Article  Google Scholar 

  29. Vorotilo, S., Kiryukhantsev-Korneev, Ph.V., Seplyarskii, B.S., Kochetkov, R.A., Abzalov, N.I., Kovalev, I.D., Lisina, T.G., and Zaitsev, A.A., (Ti,Cr)C-based cermets with varied NiCr binder content via elemental SHS for perspective cutting tools, Crystals, 2020, vol. 10, pp. 412–428. https://doi.org/10.3390/cryst10050412

    Article  CAS  Google Scholar 

  30. Seplyarskii, B.S., Kochetkov, R.A., Lisina, T.G., and Abzalov, N.I., Effect of a Ti + C granule size on combustion in a nitrogen flow, Combust. Explos. Shock Waves, 2021, vol. 57, pp. 60–66. https://doi.org/10.1134/S001050822101007X

    Article  Google Scholar 

  31. Seplyarskii, B.S., Kochetkov, R.A., Lisina, T.G., Rubtsov, N.M., and Abzalov, N.I., Macrokinetic analysis of the combustion patterns in the transition from powder to granular mixtures by the example of compositions 5Ti + 3Si and Ti + C, Combust. Flame, 2022, vol. 236, p. 111811. https://doi.org/10.1016/j.combustflame.2021.111811

    Article  CAS  Google Scholar 

  32. Zenin, A.A., Merzhanov, A.G., and Nersisyan, G.A., Thermal wave structure in SHS processes, Combust. Explos. Shock Waves, 1981, vol. 17, pp. 63–71. https://doi.org/10.1007/BF00772787

    Article  Google Scholar 

  33. Slezak, T., Zmywaczyk, J., and Koniorczyk, P., Thermal diffusivity investigations of the Titanium Grade 1 in wide temperature range, AIP Conf. Proc., 2019, vol. 2170, p. 020019. https://doi.org/10.1063/1.5132738

    Article  CAS  Google Scholar 

  34. Korol’chenko, I.A., Kazakov, A.V., and Kukhtin, A.S., Experimental determination of thermal diffusivity of materials, Пожаровзрывоопасность веществ и материалов, 2004, vol. 13, pp. 36–38.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Seplyarskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seplyarskii, B.S., Kochetkov, R.A., Lisina, T.G. et al. Explanation of Increase in Combustion Velocity of Ti + C Powder Mixture upon Dilution with Nickel Using Convective–Conductive Combustion Model. Int. J Self-Propag. High-Temp. Synth. 31, 195–207 (2022). https://doi.org/10.3103/S1061386222040100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386222040100

Keywords:

Navigation