Skip to main content
Log in

SHS Pressing of (Ti–Al–Mn)/Ti Metal–Intermetallic Layered Material

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

(Ti–Al–Mn)/Ti metal–intermetallic layered material was prepared by SHS pressing. It was found that the combustion product obtained in Ti–Al–Mn layer consists of hexagonal Ti(Mn0.755Al1.246) and cubic Ti0.25Al0.67Mn0.08 phases. The transition zone forming between the Ti–Al–Mn layer and the Ti foil was shown to have a thickness of 10–15 µm and to be represented by TixAl phase with variable composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Titanium and titanium alloys: Fundamentals and applications, Leyens, C. and Peters, M., Eds., Weinheim: Wiley-VCH, 2003. https://doi.org/10.1002/3527602119

    Book  Google Scholar 

  2. Kunal, K., Ramachandran, R., and Norman, M.W., Advances in gamma titanium aluminides and their manufacturing techniques, Prog. Aerosp. Sci., 2012, vol. 55, pp. 1–16. https://doi.org/10.1016/j.paerosci.2012.04.001

    Article  Google Scholar 

  3. Clemens, H. and Mayer, S., Design processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys, Adv. Eng. Mater, 2013, vol. 15, pp. 191–215. https://doi.org/10.1002/adem.201200231

    Article  CAS  Google Scholar 

  4. Yogesha, B. and Bhattacharya, S.S., Superplastic behavior of a Ti–Al–Mn alloy, J. Manuf. Sci. Prod., 2008, vol. 9, nos. 1–2, pp. 81–86. https://doi.org/10.1515/IJMSP.2008.9.1-2.81

    Article  CAS  Google Scholar 

  5. Mikhaylovskaya, A.V., Mosleh, A.O., Kotov, A.D., Kwame, J.S., Pourcelot, T., Golovin, I.S., and Portnoy, V.K., Superplastic deformation behavior and microstructure evolution of near-α-Ti–Al–Mn alloy, Mater. Sci. Eng. A, 2017, vol. 708, pp. 469–477. https://doi.org/10.1016/j.msea.2017.10.017

    Article  CAS  Google Scholar 

  6. Kim, Y.W. and Kim, S.L., Advances in gammalloy materials-processes-application technology: successes, dilemmas, and future, JOM, 2018, vol. 70, pp. 553–560. https://doi.org/10.1007/s11837-018-2747-x

    Article  Google Scholar 

  7. Xu, H., Li, X., Xing, W., Shu, L., Ma, Y., and Liu, K., Processing map and hot working mechanism of as-cast Ti–42Al–5Mn alloy, Adv. Eng. Mater., 2018, vol. 20, p. 1701059. https://doi.org/10.1002/adem.201701059

    Article  CAS  Google Scholar 

  8. Kainuma, R., Fujita, Y., Mitsui, H., Ohnuma, I., and Ishida, K., Phase equilibria among α(hcp), β(bcc) and γ(L10) phases in Ti–Al base ternary alloys, Intermetallics, 2000, vol. 8, pp. 855–867. https://doi.org/10.1016/S0966-9795(00)00015-7

    Article  CAS  Google Scholar 

  9. Appel, F., Paul, J.D.H., and Oehring, M., Gamma titanium aluminide alloys: science and technology, John Wiley & Sons, 2011. https://doi.org/10.1002/9783527636204

    Book  Google Scholar 

  10. Huang, Z.W. and Bowen, P., Persistent microslip bands in the lamellar TiAl structure subjected to room temperature fatigue, Scr. Mater., 2001, vol. 45, pp. 931–937. https://doi.org/10.1016/S1359-6462(01)01114-9

    Article  CAS  Google Scholar 

  11. Wang, Q., Ding, H., Zhang, H., Chen, R., Guo, J., and Fu, H., Influence of Mn addition on the microstructure and mechanical properties of a directionally solidified γ-TiAl alloy, Mater. Charact., 2018, vol. 137, pp. 133–141. https://doi.org/10.1016/j.matchar.2018.01.029

    Article  CAS  Google Scholar 

  12. Hashimoto, K., Doi, H., Kasahara, K., Nakano, O., Tsujimoto, T., and Suzuki, T., Effects of third elements on the structures of TiA1-based alloys, J. Japan Inst. Met., 1988, vol. 52, no. 8, pp. 816–825. https://doi.org/10.2320/jinstmet1952.52.8_816

    Article  CAS  Google Scholar 

  13. Chen, Z., Jones, I., and Small, C., Laves phase in Ti–42Al–10Mn alloy, Scr. Mater., 1996, vol. 35, no. 1, pp. 23–27. https://doi.org/10.1016/1359-6462(96)00085-1

    Article  CAS  Google Scholar 

  14. Matts, O.E., Tarasov, S.Yu, Domenichini, B., Lazurenko, D.V., Filippov, A.V., Bataeva, V.A, Rashkovets, M.V., Chakin, I.K., and Emurlaeva, K.I., Tribo-oxidation of Ti–Al–Fe and Ti–Al–Mn cladding layers obtained by non-vacuum electron beam treatment, Surf. Coat. Tech., 2021, vol. 421, p. 127442. https://doi.org/10.1016/j.surfcoat.2021.127442

    Article  CAS  Google Scholar 

  15. Butler, C.J., Mccartney, D.G., Small, C.J., Horrocks, F.J., and Saunders, N., Solidification microstructures and calculated phase equilibria in the Ti–Al–Mn system, Acta Mater., 1997, vol. 45, no 7, pp. 2931–2947. https://doi.org/10.1016/S1359-6454(96)00391-6

    Article  CAS  Google Scholar 

  16. Yan, X.-L., Chen, X.-Q., Grytsiv, A., Rogl, P., Podloucky, R., Schmidt, H., Giester, G., and Ding, X.-Y., On the ternary Laves phases Ti(Mn1–xAlx)2 with MgZn2-type, Intermetallics, 2008, vol. 16, pp. 16–26. https://doi.org/10.1016/j.intermet.2007.07.005

    Article  CAS  Google Scholar 

  17. Lawerens, W., De Boeck, A., Thijs, M., Van Stappen, M., and Steenackers, P., PVD Al–Ti and Al–Mn coatings for high temperature corrosion protection of sheet steel, Surf. Coat. Tech., 2001, vols. 146–147, pp. 27–32. https://doi.org/10.1016/S0257-8972(01)01468-2

    Article  Google Scholar 

  18. Pityulin, A.N., Samorasprostranyayushchiisya visokotemperaturnyi sintez: teoriya i praktika (Self-propagating high-temperature synthesis: theory and practice), Sytschev, A.E., Ed., Chernogolovka: Territoriya, 2001, pp. 333–353.

    Google Scholar 

  19. Shcherbakov, V.A., Gryadunov, A.N., and Alymov, M.I., Synthesis and characteristics of the B4C–ZrB2 composites, Lett. Mater., 2017, vol. 7, pp. 398–401. https://doi.org/10.22226/2410-3535-2017-4-398-401

    Article  Google Scholar 

  20. Sytschev, A.E., Busurina, M.L., and Lazarev, P.A., Combustion synthesis and phase formation in the Ti–Al–Mn alloy, Int. J. Self-Propag. High-Temp. Synth., 2022, vol. 31, no. 2, pp. 80–84. https://doi.org/10.3103/S1061386222020108

    Article  CAS  Google Scholar 

  21. Tripathi, A., Kulkarrni, A., and Kulkarni, K.N., Interdiffusion in β (BCC) phase of the Ti–Al–Mn system at 1100°C, Metall. Mater. Trans., 2020, vol. 51A, pp. 1789–1798. https://doi.org/10.1007/s11661-020-05629-z

    Article  CAS  Google Scholar 

  22. Huang, X., Tan, J., Guo, Y., Xu, G., and Cui, Y., Experimental diffusion research on BCC Ti–Mn binary and Ti–Al–Mn ternary alloys, J. Phase Equilib. Diffus, 2018, vol. 39, pp. 702–713. DOI. https://doi.org/10.1007/s11669-018-0675-7

    Article  CAS  Google Scholar 

  23. Watson, A., Al–Mn–Ti (Aluminium–Manganese–Titanium), Light metal systems, Berlin: Springer, 2005, part 3, pp. 253–265.

  24. Lyakishev, N.P., Diagrammy sostoyaniya dvoinykh metallicheskikh sistem (State diagram for double metallic systems), Moscow: Mashinostroenie, 1996, vol. 3.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Sytschev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Golosova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazarev, P.A., Busurina, M.L., Gryadunov, A.N. et al. SHS Pressing of (Ti–Al–Mn)/Ti Metal–Intermetallic Layered Material. Int. J Self-Propag. High-Temp. Synth. 31, 164–168 (2022). https://doi.org/10.3103/S1061386222040057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386222040057

Keywords:

Navigation