Skip to main content
Log in

Composite Catalyst for Conversion of Plastic Waste to Fuel: Preparation and Performance

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

In this work, we prepared a composite material comprising of Mn and Ag nanoparticles supported on graphene nanoplatelets embedded into a matrix of polyethylene glycol. The synthesized material was tested as a catalyst for pyrolytic conversion of high-density polyethylene into the methane-based gaseous mixture and solid char carbon in a fixed bed reactor and showed good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Yan, J., Khoo, E., Sumboja, A., and Lee, P.S., Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior, ACS Nano, 2010, vol. 4, no. 7, pp. 4247–4255. https://doi.org/10.1021/nn100592d

    Article  CAS  Google Scholar 

  2. Zhang, H., Molecularly imprinted nanoparticles for biomedical applications, Adv. Mater., 2020, vol. 32, no. 3, 1806328. https://doi.org/10.1002/adma.201806328

    Article  CAS  Google Scholar 

  3. Simon, P. and Gogotsi, Y., Materials for electrochemical capacitors, Nanosci. Technol., 2009, pp. 320–329. https://doi.org/10.1142/9789814287005_0033

  4. Fei, J., Cui, Y., Yan, X., Yang, Y., Wang, K., and Li, J., Controlled fabrication of polyaniline spherical and cubic shells with hierarchical nanostructures, ACS Nano, 2009, vol. 3, no 11, pp. 3714–3718. https://doi.org/10.1021/nn900921v

    Article  CAS  Google Scholar 

  5. Kopylovich, M.N., Ribeiro, A.P., Alegria, E.C., Martins, N.M., Martins, L.M., and Pombeiro, A.J., Catalytic oxidation of alcohols: Recent advances, Adv. Organomet. Chem., 2015, vol. 63, pp. 91–174. https://doi.org/10.1016/bs.adomc.2015.02.004

    Article  CAS  Google Scholar 

  6. Mobley, J.K. and Crocker, M., Catalytic oxidation of alcohols to carbonyl compounds over hydrotalcite and hydrotalcite-supported catalysts, RSC Adv., 2015, vol. 5, no. 81, pp. 65780–65797. https://doi.org/10.1039/C5RA11254K

    Article  CAS  Google Scholar 

  7. Ciriminna, R., Pandarus, V., Béland, F., Xu, Y.J., and Pagliaro, M., Heterogeneously catalyzed alcohol oxidation for the fine chemical industry, Org. Process Res. Dev., 2015, vol. 19, no. 11, pp 1554–1558. https://doi.org/10.1021/op900059x

    Article  CAS  Google Scholar 

  8. Velasquez Ochoa, J. and Cavani, F., Gas-phase oxidation of alcohols: Innovation in industrial technologies and recent developments, in Transition Metal Catalists in Aerobic Alcohol Oxidation, Cardona, F. and Parmeggiani, C., Eds., London: RSC, 2014, pp. 203–230. https://doi.org/10.1039/9781782621652.

  9. Xu, C., Zhang, C., Li, H., Zhao, X., Song, L., and Li, X., An overview of selective oxidation of alcohols: Catalysts, oxidants and reaction mechanisms, Catal. Surv. Asia, 2016, vol. 20, no. 1, pp. 13–22. https://doi.org/10.1007/s10563-015-9199-x

    Article  CAS  Google Scholar 

  10. Sharma, A.S., Kaur, H., and Shah, D., Selective oxidation of alcohols by supported gold nanoparticles: Recent advances, RSC Adv., 2016, vol. 6, no. 34, pp. 28688–28727. https://doi.org/10.1039/C5RA25646A

    Article  CAS  Google Scholar 

  11. Hussain, M.A., Joseph, N., Kang, O., Cho, Y.-H., Um, B.-H., and Kim, J.W., Supported metal nanoparticles: Their catalytic applications to selective alcohol oxidation, Appl. Chem. Eng., 2016, vol. 27, pp. 227–238. https://doi.org/10.14478/ace.2016.1047

    Article  CAS  Google Scholar 

  12. Liu, F., Wang, H., Sapi, A., Tatsumi, H., Zherebetsky, D., Han, H. L., and Somorjai, G.A., Molecular orientations change reaction kinetics and mechanism: A review on catalytic alcohol oxidation in gas phase and liquid phase on size-controlled Pt nanoparticles, Catalysts, 2018, vol. 8, no. 6, p. 226. https://doi.org/10.3390/catal8060226

    Article  CAS  Google Scholar 

  13. Sharma, A.S., Kaur, H., and Shah, D., Selective oxidation of alcohols by supported gold nanoparticles: Recent advances, RSC Adv., 2016, vol. 6, no. 34, pp. 28688–28727. https://doi.org/10.1039/C5RA25646A

    Article  CAS  Google Scholar 

  14. Dong, X.Y., Gao, Z.W., Yang, K.F., Zhang, W.Q., and Xu, L.W., Nanosilver as a new generation of silver catalysts in organic transformations for efficient synthesis of fine chemicals, Catal. Sci. Technol., 2015, vol. 5, no. 5, pp. 2554–2574. https://doi.org/10.1039/C5CY00285K

    Article  CAS  Google Scholar 

  15. Wen, C., Yin, A., and Dai, W.L., Recent advances in silver-based heterogeneous catalysts for green chemistry processes, Appl. Catal., B, 2014, vol. 160, pp. 730–741.

    Article  Google Scholar 

  16. Davis, S.E., Ide, M.S., and Davis, R.J., Selective oxidation of alcohols and aldehydes over supported metal nanoparticles, Green Chem., 2013, vol. 15, no. 1, pp. 17–45. https://doi.org/10.3303/CET1976224

    Article  CAS  Google Scholar 

  17. Bukhtiyarov, A.V., Burueva, D.B., Prosvirin, I.P., Klyushin, A.Yu., Panafidin, M.A., Kovtunov, K.V., Bukhtiyarov, V.I., and Koptyug, I.V., Bimetallic Pd–Au/highly oriented pyrolytic graphite catalysts: From composition to pairwise para-hydrogen addition selectivity, J. Phys. Chem. C, 2018, vol. 122, no. 32, pp. 18588–18595. https://doi.org/10.1021/acs.jpcc.8b06281

    Article  CAS  Google Scholar 

  18. Gilroy, K.D., Ruditskiy, A., Peng, H.C., Qin, D., and Xia, Y., Bimetallic nanocrystals: Syntheses, properties, and applications, Chem. Rev., 2016, vol. 116, no. 18, pp. 10414–10472.

    Article  CAS  Google Scholar 

  19. Jiang, Z., Liu, C., and Sun, L., Catalytic properties of silver nanoparticles supported on silica spheres, J. Phys. Chem. B, 2005, vol. 109, no. 5, pp. 1730–1735. https://doi.org/10.1021/jp046032g

    Article  CAS  Google Scholar 

  20. Vidhu, V.K. and Daizy, Ph., Catalytic degradation of organic dyes using biosynthesized silver nanoparticles, Micron, 2014, vol. 56, no. 1, pp. 54–62. https://doi.org/10.1016/j.micron.2013.10.006

    Article  CAS  Google Scholar 

  21. Petkova, G.A., Zaruba, K., Žvátora, P., and Král, V., Gold and silver nanoparticles for biomolecule immobilization and enzymatic catalysis, Nanoscale Res. Lett., 2012, vol. 7, р. 287. https://doi.org/10.1186/1556-276X-7-287

    Article  CAS  Google Scholar 

  22. Ameen, A., Hassan, A.D., Hamdy, F.M., Aly, M.R., and Asmaa, S.H., Studying and evaluating sustainable materials for converting plastic waste to fuel, Energy Environ. Res., 2018, vol. 8, no. 1. https://doi.org/10.5539/eer.v8n1p73

  23. Khrapach, I., Withers, F., Bointon, T.H., Polyushkin, D.K., Barnes, W.L., Russo, S., and Craciun, M.F., Novel highly conductive and transparent graphene-based conductors, Adv. Mater., 2012, vol. 24, no. 21, pp. 2844–2849. https://doi.org/10.1002/adma.201200489

    Article  CAS  Google Scholar 

  24. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., and Ruoff, R.S., Adv. Mater., 2010, vol. 22, pp. 3906–3924. https://doi.org/10.1002/adma.201001068

    Article  CAS  Google Scholar 

  25. Hecht, D.S., Hu, L., and Irvin, G., Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures, Adv. Mater., 2011, vol. 23, no. 13, pp. 1482–1513. https://doi.org/10.1002/adma.201003188

    Article  CAS  Google Scholar 

  26. Zheng, Q., Li, Z., Yang, J., and Kim, J.K., Graphene oxide-based transparent conductive films, Prog. Mater. Sci., 2014, vol. 64, pp. 200–247. https://doi.org/10.1016/j.pmatsci.2014.03.004

    Article  CAS  Google Scholar 

  27. Zheng, Q., Zhang, B., Lin, X., Shen, X., Yousefi, N., Huang, Z.D., and Kim, J.K., Highly transparent and conducting ultra large graphene oxide/single-walled carbon nanotube hybrid films produced by Langmuir–Blodgett assembly, J. Mater. Chem., 2012, vol. 22, no. 48, pp. 25072–25082. https://doi.org/10.1039/C2JM34870E

    Article  CAS  Google Scholar 

  28. Gao, W. and Kono, J., Science and applications of wafer-scale crystalline carbon nanotube films prepared through controlled vacuum filtration, R. Soc. Open Sci., 2019, vol. 6, no. 3, p. 181605. https://doi.org/10.1098/rsos.181605

    Article  CAS  Google Scholar 

  29. Du, W., Jiang, X., and Zhu, L., From graphite to graphene: Direct liquid-phase exfoliation of graphite to produce single-and few-layered pristine graphene, J. Mater. Chem. A, 2013, vol. 1, no. 36, pp. 10592–10606. https://doi.org/10.1039/C3TA12212C

    Article  CAS  Google Scholar 

  30. Yang, X. and Liu, Z.H., A kind of nanofluid consisting of surface-functionalized nanoparticles, Nanoscale Res. Lett., 2010, vol. 5, no. 8, pp. 1324–1328. https://doi.org/10.1007/s11671-010-9646-6

    Article  CAS  Google Scholar 

  31. Vandrangi, S., Kumar, S., Emani, K., Viswanatha, S., and Gurunadh, V., Friction factor analysis of SiO2 and Al2O3 nanofluids dispersed in 60 and 40 egw base fluids, J. Adv. Res. Fluid Mech. Therm. Sci., 2018, vol. 51, no. 1, pp. 61–70. https://akademiabaru.com/submit/index.php/arfmts/article/view/2333.

    Google Scholar 

  32. Fan, F., Zhou, C., Wang, X., and Szpunar, J., Layer-by-layer assembly of a self-healing anticorrosion coating on magnesium alloys, ACS Appl. Mater. Interfaces, 2015, vol. 7, no. 49, pp. 27271–27278. https://doi.org/10.1021/acsami.5b08577

    Article  CAS  Google Scholar 

  33. Kim, J., Cote, L.J., Kim, F., Yuan, W., Shull, K.R., and Huang, J., Graphene oxide sheets at interfaces, J. Am. Chem. Soc., 2010, vol. 132, no. 23, pp. 8180–8186. https://doi.org/10.1021/ja102777p

    Article  CAS  Google Scholar 

  34. Cong, C., Nakayama, S., Maenosono, S., and Harada, M., Microwave-assisted polyol synthesis of Pt/Pd and Pt/Rh bimetallic nanoparticles in polymer solutions prepared by batch and continuous-flow processing, Ind. Eng. Chem. Res., 2018, vol. 57, no. 1, pp. 179–190. https://doi.org/10.1021/acs.iecr.7b03154

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abdelrahman.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelrahman, A., Zaki, A.H. & Hamouda, A.S. Composite Catalyst for Conversion of Plastic Waste to Fuel: Preparation and Performance. Int. J Self-Propag. High-Temp. Synth. 31, 10–16 (2022). https://doi.org/10.3103/S1061386222010022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386222010022

Keywords:

Navigation