Skip to main content
Log in

Off-Stoichiometric NixCo3 – xO4 (x < 1) Spinels by Solution-Combustion Synthesis Using Citric Acid–Glycine Mixtures as a Dual Fuel

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Solution-combustion synthesis of NixCo3 – xO4 (x < 1) spinels from aqueous solutions of nickel and cobalt nitrates using citric acid–glycine mixtures as a dual fuel was investigated by XRD and SEM. A decrease in combustion temperature at minimal amounts of glycine (φgl = 0.5) and citric acid (φcitr = 0.2–0.3) afforded for the synthesis of NiCo2O4 spinel after heat treatment of as-synthesized powders at 400°C for 20 h. An increase in the fuel content of starting solutions (for Σφ = φgl + φgl > 0.9) led to an increase in reaction temperature and the formation (after annealing at 400°C) of non-stoichiometric spinels NixCo3 – xO4 (x < 1) with an admixture of double oxides NiyCo1 – yO (y = 0.71–0.77).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Zheng, M., Xiao, X., Li, L., Gu, P., Dai, X., Tang, H., Hu, Q., Xue, H., and Pang, H., Hierarchically nanostructured transition metal oxides for supercapacitors, Sci. China Mater., 2018, vol. 61, no. 2, pp. 185–209. https://doi.org/10.1007/s40843-017-9095-4

    Article  CAS  Google Scholar 

  2. Darbar, D., Anilkumar, M.R., Rajagopalan, V., Bhattacharya, I., Elim, H., Ramakrishnappa, T., Ezemag, F.I., Jose, R., and Reddy, M.V., Studies on spinel cobaltites MCo2O4 (M = Mn, Zn, Fe, Ni and Co) and their functional properties, Ceram. Int., 2018, vol. 44, no. 5, pp. 4630–4639. https://doi.org/10.1016/j.ceramint.2017.12.010

    Article  CAS  Google Scholar 

  3. Jampani, P.H., Manivannan, A., and Kumta, P.N., Advancing the supercapacitor materials and technology frontier for improving power quality, Electrochem. Soc. Interface, 2010, pp. 57–62. https://doi.org/10.1149/2.F07103if

  4. Wei, T.-Y., Chen, C.-H., Chien, H.-C., Lu, S.-Y., and Hu, C.-C., A cost-effective supercapacitor material of ultrahigh specific capacitances: Spinel nickel cobaltite aerogels from an epoxide-driven sol–gel process, Adv. Mater., 2010, vol. 22, pp. 347–351. https://doi.org/10.1002/adma.200902175

    Article  CAS  Google Scholar 

  5. Yuan, Y., Long, D., Li, Z., and Zhu, J., Fe substitution in urchin-like NiCo2O4 for energy storage devices, RSC Adv., 2019, no. 13, pp. 7210–7217.https://doi.org/10.1039/C8RA10586C

  6. Ahsan, M.T., Usman, M., Ali, Z., Javed, S., Ali, R., Farooq, M.U., Akram, M.A., and Mahmood, A., 3D hierarchically mesoporous zinc-nickel-cobalt ternary oxide (Zn0.6Ni0.8Co1.6O4) nanowires for high-performance asymmetric supercapacitors, RSC Adv., 2020, vol. 8, 487. https://doi.org/10.3389/fchem.2020.00487

    Article  CAS  Google Scholar 

  7. He, P., Huang, Q., Huang, B., and Chen, T., Controllable synthesis of Ni–Co–Mn multicomponent metal oxides with various morphologies for high-performance flexible supercapacitors, RSC Adv., 2017, vol. 7, 24353. https://doi.org/10.1039/c7ra03018e

    Article  CAS  Google Scholar 

  8. Mariappan, C.R., Upadhyay, S., Kumar, V., Indris, S., and Ehrenberg, H., Fabrication and characterization of monodispersed Mn0.8Ni0.2Co2O4 mesoporous microspheres for supercapacitor application, Ceram. Int., 2018, vol. 44, pp. 8864–8869. https://doi.org/10.1016/j.ceramint.2018.02.071

    Article  CAS  Google Scholar 

  9. Kim, B.C., Rajesh, M., Jang, H.S., Yu, K.H., Kim, S.-J., Park, S.Y., and Raj, C.J., Facile synthesis and capacitive properties of nickel-cobalt binary metal oxide nanoaggregates via oxalate route, J. Alloys Compd., 2016, vol. 674, pp. 376–383. https://doi.org/10.1016/j.jallcom.2016.03.028

    Article  CAS  Google Scholar 

  10. Meena, P.L., Kumar, R., and Sreenivas, K., Rietveld refinement and spectroscopic analysis of Co3–xMnxO4 (0.1 ≤ x ≤ 1.0) ceramic compositions, Int. J. Phys. Chem. Math. Sci., 2014, vol. 3; no. 1, pp. 7–17.

    CAS  Google Scholar 

  11. Bobruk, M., Brylewska, K., Durczak, K., Wojciechowski, K., Adamczyk, A., and Brylewski, T., Synthesis of manganese-cobalt spinel via wet chemistry methods and its properties, Ceram. Int., 2017, vol. 43, pp. 15597–15609. https://doi.org/10.1016/j.ceramint.2017.08.116

    Article  CAS  Google Scholar 

  12. Merabet, L., Rida, K., and Boukmouche, N., Sol-gel synthesis, characterization, and supercapacitor applications of MCo2O4 (M = Ni, Mn, Cu, Zn) cobaltite spinels, Ceram. Int., 2018, vol. 44, no.10, pp. 11265–11273. https://doi.org/10.1016/j.ceramint.2018.03.171

    Article  CAS  Google Scholar 

  13. Mhin, S., Han, H., Kim, K.M., Lim, J., Kim, D., Lee, J.-I., and Ryu, J.H., Synthesis of (Ni,Mn,Co)O4 nanopowder with single cubic spinel phase via combustion method, Ceram. Int., 2016, vol. 42, pp.13654–13658. https://doi.org/10.1016/j.ceramint.2016.05.161

    Article  CAS  Google Scholar 

  14. Wang, W., Liu, X., Gao, F., and Tian, C., Synthesis of nanocrystalline NiCo0.2Mn1.8O4 powders for NTC thermistor by a gel auto-combustion process, Ceram. Int., 2007, vol. 33, pp. 459–462. https://doi.org/10.1016/j.ceramint.2005.10.010

    Article  CAS  Google Scholar 

  15. Hosseini, S.A., Niaei, A., Salari, D., and Nabavi, S.R., Nanocrystalline AMn2O4 (A = Co, Ni, Cu) spinels for remediation of volatile organic compounds: Synthesis, characterization and catalytic performance, Ceram. Int., 2012, vol. 38, pp. 1655–1661. https://doi.org/10.1016/j.ceramint.2011.09.057

    Article  CAS  Google Scholar 

  16. Maleki, A., Hosseini, N., and Taherizadeh, A.R., Synthesis and characterization of cobalt ferrite nanoparticles prepared by the glycine-nitrate process, Ceram. Int., 2018, vol. 44, no. 7, pp. 8576–8581. https://doi.org/10.1016/j.ceramint.2018.02.063

    Article  CAS  Google Scholar 

  17. Rodríguez-Carvajal, J., Recent advances in magnetic structure determination by neutron powder diffraction, Physica B, 1993, vol. 192, pp. 55–69. https://doi.org/10.1016/0921-4526(93)90108-I

    Article  Google Scholar 

  18. Kuboon, S. and Hu, Y.H., Study of NiO–CoO and Co3O4–Ni3O4, solid solutions in multiphase Ni–Co–O systems, Ind. Eng. Chem. Res., 2011, vol. 50, pp. 2015–2020. https://doi.org/10.1021/ie101249r

    Article  CAS  Google Scholar 

Download references

Funding

This research was carried out in the frame of state assignment for the Institute of Solid State Chemistry (themes АААА-А19-119031890026-6 and AAAA-A18-118020190112-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Zhuravlev.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuravlev, V.D., Dmitriev, A.V., Vladimirova, E.V. et al. Off-Stoichiometric NixCo3 – xO4 (x < 1) Spinels by Solution-Combustion Synthesis Using Citric Acid–Glycine Mixtures as a Dual Fuel. Int. J Self-Propag. High-Temp. Synth. 30, 170–174 (2021). https://doi.org/10.3103/S1061386221030122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386221030122

Keywords:

Navigation