Skip to main content
Log in

Mo5SiB2-Based Ceramics by Forced SHS Compaction and Hot Pressing of SHS-Produced Powders: Features of Phase-Formation Processes

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract—

Mo5SiB2-based ceramics were fabricated from elemental powders by forced SHS compaction and hot pressing of SHS-produced powders and specific features of product patterning were characterized by XRD, time-resolved XRD, SEM/EDS, and TEM/EDS. Best results were obtained upon hot pressing of SHS-produced Mo–Si–B powders: resultant material was single-phased Mo5SiB2 with a mean grain size of 2–10 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Dimiduk, D. and Perepezko, J., Mo–Si–B alloys: Developing a revolutionary turbine-engine material, MRS Bull., 2003, vol. 28, no. 9, pp. 639–645. https://doi.org/10.1557/mrs2003.191

    Article  CAS  Google Scholar 

  2. Lemberg, J.A. and Ritchie, R.O., Mo–Si–B alloys for ultrahigh-temperature structural applications, Adv. Mater., 2012, vol. 24, no. 26, pp. 3445–3480. https://doi.org/10.1002/adma.201200764

    Article  CAS  Google Scholar 

  3. Ito, K., Ihara, K., Tanaka, K., Fujikura, M., and Yamaguchi, M., Physical and mechanical properties of single crystals of the T2 phase in the Mo–Si–B system, Intermetallics, 2001, vol. 9, no. 7, pp. 591–602. https://doi.org/10.1016/S0966-9795(01)00049-8

    Article  CAS  Google Scholar 

  4. Yoshimi, K., Nakatani, S., Suda, T., Hanada, S., and Habazaki, H., Oxidation behavior of Mo5SiB2-based alloy at elevated temperatures, Intermetallics, 2002, vol. 10, no. 5, pp. 407–414. https://doi.org/10.1016/S0966-9795(02)00013-4

    Article  CAS  Google Scholar 

  5. Hayashi, T., Ito, K., Ihara, K., Fujikura, M., and Yamaguchi, M., Creep of single crystalline and polycrystalline T2 phase in the Mo–Si–B system, Intermetallics, 2004, vol. 12, nos. 7–9, pp. 699–704. https://doi.org/10.1016/j.intermet.2004.02.009

    Article  CAS  Google Scholar 

  6. Abbasi, A.R. and Shamanian, M., Synthesis of Mo5SiB2 based nanocomposites by mechanical alloying and subsequent heat treatment, Mater. Sci. Eng. A, 2011, vol. 528, no. 9, pp. 3295–3301. https://doi.org/10.1016/j.msea.2011.01.033

    Article  CAS  Google Scholar 

  7. Yamauchi, A., Yoshimi, K., Kurokawa, K., and Hanada, S., Synthesis of Mo–Si–B in situ composites by mechanical alloying, J. Alloys Comp., 2007, vol. 434–435, pp. 420–423. https://doi.org/10.1016/j.jallcom.2006.08.218

    Article  CAS  Google Scholar 

  8. Abbasi, A.R. and Shamanian, M., Characterization of in situ α-Mo/Mo5SiB2 nanocomposite produced by mechanical alloying, J. Alloys Comp., 2011, vol. 508, no. 1, 152–157. https://doi.org/10.1016/j.jallcom.2010.08.036

    Article  CAS  Google Scholar 

  9. Zhang, L., Pan, K., Wang, J., and Lin, J., Spark plasma sintering synthesis of intermetallic T2 in the Mo–Si–B system, Adv. Powder Technol., 2013, vol. 24, no. 6, pp. 913–920. https://doi.org/10.1016/j.apt.2013.01.003

    Article  CAS  Google Scholar 

  10. Zhang, L., Pan, K., and Lin, J., Fracture toughness and fracture mechanisms in Mo5SiB2 at ambient to elevated temperatures, Intermetallics, 2013, vol. 38, pp. 49–54. https://doi.org/10.1016/j.intermet.2013.02.008

    Article  CAS  Google Scholar 

  11. Levashov, E.A., Pogozhev, Yu.S., Potanin, A.Yu., Kochetov, N.A., Kovalev, D.Yu., Shvyndina, N.V., and Sviridova, T.A., Self-propagating high-temperature synthesis of advanced ceramics in the Mo–Si–B system: Kinetics and mechanism of combustion and structure formation. Ceram. Int., 2014, vol. 40, no. 5, pp. 6541–6552. https://doi.org/10.1016/j.ceramint.2013.11.107

    Article  CAS  Google Scholar 

  12. Patsera, E.I., Kurbatkina, V.V., Levashov, E.A., and Kochetov, N.A., Features of combustion in the Mo–Si–B system: 2. Effect of mechanical activation, Russ. J. Non-Ferrous Met., 2015, vol. 56, no. 3, pp. 307–312. https://doi.org/10.3103/S1067821215030165

    Article  Google Scholar 

  13. Esparza, A.A. and Shafirovich, E., Mechanically activated combustion synthesis of molybdenum borosilicides for ultrahigh-temperature structural applications, J. Alloys Comp., 2016, vol. 670, pp. 297–305. https://doi.org/10.1016/j.jallcom.2016.02.029

    Article  CAS  Google Scholar 

  14. Yeh, C.L. and Chen, W.L., Facile and rapid synthesis of Mo5SiB2-based ceramics from solid-phase combustion reaction with reducing stages, J. Alloys Comp., 2019, vol. 805, pp. 740–746. https://doi.org/10.1016/j.jallcom.2019.07.135

    Article  CAS  Google Scholar 

  15. Yeh, C.L. and Chen, W.L., Fabrication of Mo5SiB2-based composites by combustion synthesis involving aluminothermic reduction of MoO3, Ceram. Int., 2019, vol. 45, no. 5, pp. 5355–5360. https://doi.org/10.1016/j.ceramint.2018.11.235

    Article  CAS  Google Scholar 

  16. Kovalev, D.Y. and Ponomarev, V.I., Time-resolved X-Ray diffraction in SHS research and related areas: An overview, Int. J. Self-Propag. High-Temp. Synth., 2019, vol. 28, no. 2, pp. 114–123. https://doi.org/10.3103/S1061386219020079

    Article  Google Scholar 

  17. Mukasyan, A.S. and Shuck, C.E., Kinetics of SHS reactions: A review, Int. J. Self-Propag. High-Temp. Synth., 2017, vol. 26, no. 3, pp. 145–165. https://doi.org/10.3103/S1061386217030049

    Article  Google Scholar 

  18. Eremina, E.N., Kurbatkina, V.V., Levashov, E.A., Rogachev, A.S., and Kochetov, N.A., Obtaining the composite MoB material by means of force SHS compacting with preliminary mechanical activation of Mo–10% B mixture, Chem. Sustain. Dev., 2005, vol. 13, no. 2, pp. 197–204.

    CAS  Google Scholar 

  19. Babkin, S.B., Bloshenko, V.N., and Borovinskaya, I.P., Mechanism of mass transfer with combustion of the SHS-system Mo+B, Combust., Explos., Shock Waves, 1991, vol. 27, no. 3, pp. 333–338. https://doi.org/10.1007/BF00789667

    Article  Google Scholar 

  20. Egishyan, A.V., Manukyan, Kh.V., Harutyunyan, A.B., and Kharatyan, S.L., Influence of molybdenum and boron oxides on combustion in the Mo–B gasless system, Int. J. Self-Propag. High-Temp. Synth., 2006, vol. 15, no. 1, pp. 33–40.

    CAS  Google Scholar 

  21. Kharatyan, S.L., Chatilyan, H.A., and Galstyan, G.S., Growth kinetics of Mo3Si layer in the Mo5Si3/Mo diffusion couple, Thin Solid Films, 2008, vol. 516, no. 15, pp. 4876–4881. https://doi.org/10.1016/j.tsf.2007.09.010

    Article  CAS  Google Scholar 

  22. Baras, F., Kondepudi, D.K., and Bernard, F., Combustion synthesis of MoSi2 and MoSi2–Mo5Si3 composites: Multilayer modeling and control of the microstructure, J. Alloys Comp., 2010, vol. 505, no. 1, pp. 43–53. https://doi.org/10.1016/j.jallcom.2010.06.024

    Article  CAS  Google Scholar 

  23. Katrych, S., Grytsiv, A., Bondar, A., Rogl, P., Velikanova, T., and Bohn, M., Structural materials: Metal–silicon–boron: On the melting behavior of Mo–Si–B alloys, J. Alloys Compd., 2002, vol. 347, nos. 1–2, pp. 94–100. https://doi.org/10.1016/S0925-8388(02)00676-X

    Article  CAS  Google Scholar 

  24. Mishra, S.K., Das, S., and Pathak, L.C., Defect structures in zirconium diboride powder prepared by self-propagating high-temperature synthesis, Mater. Sci. Eng. A, 2004, vol. 364, nos. 1–2, pp. 249–255. https://doi.org/10.1016/j.msea.2003.08.021

    Article  CAS  Google Scholar 

  25. Khanra, A.K., Godkhindi, M.M., and Pathak, L.C., Comparative studies on sintering behavior of self-propagating high-temperature synthesized ultra-fine titanium diboride powder, J. Am. Ceram. Soc., 2005, vol. 88, no. 6, pp. 1619–1621. https://doi.org/10.1111/j.1551-2916.2005.00236.x

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 18-08-00269).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Potanin.

Additional information

Translated by Yu. Scheck

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potanin, A.Y., Pogozhev, Y.S., Rupasov, S.I. et al. Mo5SiB2-Based Ceramics by Forced SHS Compaction and Hot Pressing of SHS-Produced Powders: Features of Phase-Formation Processes. Int. J Self-Propag. High-Temp. Synth. 29, 143–149 (2020). https://doi.org/10.3103/S1061386220030073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386220030073

Keywords:

Navigation