Skip to main content
Log in

High-Temperature Synthesis of Ti–Si–B and Ti–Al–B Composites and Coatings

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Binary borides Ti3SiB2, Ti3AlB2, Ti2AlB were prepared by SHS method upon variation in green composition and characterized by XRD, SEM, and EDAX. Boron was introduced into starting powder mixture in two ways: either (1) in the form of elemental boron or (2) as titanium boride. SHS in the Ti–Si–B system yielded TiB, TiB2, and Ti5Si3 while in the Ti–Al–B system, TiB, TiB2, and AlTi3. Prospects for using SHS-produced Ti–Si–B composites for deposition of wear-resistant coatings by electron-beam melting were explored. Wear resistance of boron-containing coatings was found to be higher than those based on MAX-phases Ti–Si–C and Ti–Al–C by a factor of 1.5–2.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Barsoum, M.W. and El-Raghy, T., The MAX phases: Unique new carbide and nitride materials, Am. Scientist, 2011, vol. 89, no. 4, pp. 336–345. https://doi.org/10.1511/2001.28.736

    Article  Google Scholar 

  2. Barsoum, M.W., The Mn+1AXn phases: A new class of solids, thermodynamically stable nanolaminates, Prog. Solid State Chem., 2000, vol. 28, pp. 201–281.https://doi.org/10.1016/S0079-6780(00)00006-6

  3. Firstov, S.A., Gorban, V.F., Ivanova, I.I., and Pechkovskii, E.P., Mechanical properties of porous Ti3SiC2/TiC, Ti3AlC2/TiC, Ti4AlN3/TiN nanolaminates at 20 to 1300°C, Powder Metall. Met. Ceram., 2010, vol. 49, nos. 7–8, pp. 414–423. https://doi.org/10.1007/s11106-010-9252-2

    Article  CAS  Google Scholar 

  4. Sun, Z.M., Murugaiah, A., Zhen, T., Zhon, A., and Barsoum, M.W., Microstructure and mechanical properties of porous Ti3SiC2, Acta Mater., 2005, vol. 53, no. 16, pp. 4359–4366. https://doi.org/10.1016/j.actamat.2005.05.034

    Article  CAS  Google Scholar 

  5. Liu, J., Zuo, X., Wang, Z., Wang, L., Wu, X., Ke, P., and Wang, A., Fabrication and mechanical properties of high purity of Cr2AlC coatings by adjustable Al contents, J. Alloys Comp., 2018, vol. 753, no. 15, pp. 11–17. https://doi.org/10.1016/j.jallcom.2018.04.100

    Article  CAS  Google Scholar 

  6. Kádas, K., Iuşan, D., Hellsvik, J., Cedervall, J., Berastegui, P., Sahlberg, M., Jansson, U., and Eriksson, O., AlM2B2 (M = Cr, Mn, Fe, Co, Ni): A group of nanolaminated materials, J. Phys.: Condens. Matter, 2017, vol. 29, no. 15, 155402. https://doi.org/10.1088/1361-648X/aa602a

    Article  Google Scholar 

  7. Telle, R., Momozawa, A., Jochen, D.M., and Schneider, M., Boride-based nano-laminates with MAX-phase-like behavior, J. Solid State Chem., 2006, vol. 179, no. 9, pp. 2850–2857. https://doi.org/10.1016/j.jssc.2006.01.028

    Article  CAS  Google Scholar 

  8. Ade, M. and Hillebrecht, H., Ternary borides Cr2AlB2, Cr3AlB4, and Cr4AlB6: The first members of the series (CrB2)nCrAl with n = 1, 2, 3 and a unifying concept for ternary borides as MAB-phases, Inorg. Chem., 2015, vol. 54, no. 13, pp. 6122–6135. https://doi.org/10.1021/acs.inorgchem.5b00049

    Article  CAS  Google Scholar 

  9. Kota, S., Zapata-Solvas, E., Ly, A., Lu, J., Elkassabany, O., Huon, A., Lee, W.E., Hultman, L., May, S.J., and Barsoum, M.W., Synthesis and characterization of an alumina forming nanolaminated boride: MoAlB, Sci. Rep., 2016, vol. 6, 26475. https://doi.org/10.1038/srep26475

    Article  CAS  Google Scholar 

  10. Lu, J., Kota, S., Barsoum, M.W., and Hultman, L., Atomic structure and lattice defects in nanolaminated ternary transition metal borides, Mater. Res. Lett., 2016, vol. 5, no. 4, pp. 235–241. https://doi.org/10.1080/21663831.2016.1245682

    Article  CAS  Google Scholar 

  11. Chai, P., Stoian, S.A, Tan, X., Dube, P.A., and Shatruk, M., Investigation of magnetic properties and electronic structure of layered-structure borides AlT2B2 (T = Fe, Mn, Cr) and AlFe2–xMnxB2, J. Solid State Chem., 2015, vol. 224, pp. 52–61. https://doi.org/10.1016/j.jssc.2014.04.027

    Article  CAS  Google Scholar 

  12. Barsoum, M.W., Ali, M., and El-Raghy, T., Processing and characterization of Ti2AlC, Ti2AlN, and Ti2AlC0.5N0.5, Metall. Mater. Trans. A, 2000, vol. 31, no. 7, pp. 1857–1865. https://doi.org/10.1007/s11661-006-0243-3

    Article  Google Scholar 

  13. Radovic, M., Ganguly, A., and Barsoum, M.W., Elastic properties and phonon conductivities of Ti3Al(C0.5N0.5)2 and Ti2Al(C0.5N0.5) solid solutions, J. Mater. Res., 2008, vol. 23, no. 6, pp. 1517–1521. https://doi.org/10.1557/JMR.2008.0200

    Article  CAS  Google Scholar 

  14. Zhou, A. and Barsoum, M., Kinking nonlinear elastic deformation of Ti3AlC2, Ti2AlC, Ti3Al(C0.5N0.5)2, and Ti2Al(C0.5N0.5), J. Alloys Comp., 2010, vol. 498, no. 1, pp. 62–70. https://doi.org/10.1016/j.jallcom.2010.03.099

    Article  CAS  Google Scholar 

  15. Amosov, E.A., Kovalev, D.Yu., Latukhin, E.I., Konovalikhin, S.V., and Sytschev, A.E., Self-propagating high-temperature synthesis in the Ti–Al–C–B system, Zh. Samarsk. Gos. Univ.: Ser. Tekh. Nauk, 2017, vol. 2, no. 54, pp. 161–171.

    Google Scholar 

  16. Shulov, V.A., Bytsenko, O.A., and Teryaev, D.A., Production of nanocrystalline erosion-corrosion-resistant coatings containing MAX-phase on the surface of parts from titanium alloys, Vestn. Mosk. Aviats. Inst., 2010, vol. 17, no. 3, pp. 168–177.

    Google Scholar 

  17. Afanasyev, N.I. and Lepakova, O.K., Synthesis of composite materials based on MAX-phase Ti3SiC2 containing borides, Kosmich. Appar. Tekhnol., 2018, vol. 2, no. 4, pp. 225–228. https://doi.org/10.26732/2618-7957-2018-4-225-228

    Article  Google Scholar 

  18. Dobrovolskiy, A.G. and Koshelenko, P.I., Abrasive Wear Resistance of Materials, Kiev: Tekhnika, 1989.

    Google Scholar 

  19. Lepakova, O.K., Raskolenko, L.G., and Mak-simov, Yu.M., Titanium borides prepared by self-propagating high-temperature synthesis, Inorg. Mater., 2000, vol. 36, no. 6, pp. 568–575. https://doi.org/10.1007/BF02757955

    Article  CAS  Google Scholar 

  20. Grancic, B., Mikula, M., Roch, T., Zeman, P., Satrapinskyy, L., Gregor, M., Plecenik, T., Dobročk, E., Hájovská, Z., Mičušík, M., Šatka, A., Zahoran, M., Plecenik, A., and Kúš, P., Effect of Si addition on mechanical properties and high temperature oxidation resistance of Ti–B–Si hard coatings, Surf. Coat. Technol., 2014, vol. 240, pp. 48–54. https://doi.org/10.1016/j.surfcoat.2013.12.011

    Article  CAS  Google Scholar 

  21. Mishra, S.K., Bhattacharyya, A.S., Mahato, P., and Pathak, L.C., Multicomponent Ti–Si–B–C superhard and tough composite coatings by magnetron sputtering, Surf. Coat. Technol., 2012, vol. 207, pp. 19–23. https://doi.org/10.1016/j.surfcoat.2012.03.047

    Article  CAS  Google Scholar 

  22. Fernandes, B.B., Oliveira, R.M., Ueda, M., Mariano, S.F.M., Ramos, A.S., Vieira, M.S., Melo, F.C.L., and Oliveira, G., Effect of high temperature plasma immersion ion implantation on wear resistance of Ti–Si–B sintered alloys, Surf. Coat. Technol., 2013, vol. 228, pp. 195–200. https://doi.org/10.1016/j.surfcoat.2013.04.029

    Article  CAS  Google Scholar 

  23. Shtansky, D.V., Sheveiko, A.N., Petrzhik, M.I., Kiryukhantsev-Korneev F.V., Levashov, E.A., Leyland, A., Yerokhin, A.L., and Matthews, A., Hard tribological Ti–B–N, Ti–Cr–B–N, Ti–Si–B–N, and Ti–Al–Si–B–N coatings, Surf. Coat. Technol., 2005, vol. 200, pp. 208–212. https://doi.org/10.1016/j.surfcoat.2005.02.126

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. K. Lepakova or N. I. Karakchieva.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lepakova, O.K., Karakchieva, N.I., Golobokov, N.N. et al. High-Temperature Synthesis of Ti–Si–B and Ti–Al–B Composites and Coatings. Int. J Self-Propag. High-Temp. Synth. 29, 150–156 (2020). https://doi.org/10.3103/S106138622003005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106138622003005X

Keywords:

Navigation