Skip to main content
Log in

Mechanoactivated SHS in the Ti–Ni System: Influence of Preheating Temperature

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Product composition and combustion parameters for non-activated and mechanically activated Ti–Ni mixtures were explored as a function of preheating temperature T0. Upon an increase in T0, frontal combustion of activated blends was found to change to a mode of thermal explosion at T0 around 190°С. Frontal combustion of non-activated blends was accompanied by local melting over the entire range of T0. Our results may turn helpful in theoretical modeling of SHS reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Li, B.Y., Rong, L.J., Li., Y.Y., and Gjunter, V.E., Synthesis of porous Ni–Ti shape-memory alloys by self-propagating high-temperature synthesis: Reaction mechanism and anisotropy in pore structure, Acta Mater., 2000, vol. 48, pp. 3895–3904. https://doi.org/10.1016/S1359-6454(00)00184-1

    Article  CAS  Google Scholar 

  2. Chua, C.L., Chung, C.Y., Lin, P.H., and Wang, S.D., Fabrication of porous NiTi shape memory alloy for hard-tissue implants by combustion synthesis, Mater. Sci. Eng. A, 2004, vol. 366, pp. 114–119. https://doi.org/10.1016/j.msea.2003.08.118

    Article  CAS  Google Scholar 

  3. Zhang, L. and Wang, Z., Thermal investigation of fabricating porous NiTi SMA by SHS, Exper. Therm. Fluid Sci., 2008, vol. 32, pp. 1255–1263. https://doi.org/10.1016/j.expthermflusci.2008.02.006

    Article  CAS  Google Scholar 

  4. Li, B.Y., Rong, L.J., Li., Y.Y., and Gjunter, V.E., A recent development in producing porous Ni + Ti shape memory alloys, Intermetallics, 2000, vol. 8, pp. 881–884. https://doi.org/10.1016/S0966-9795(00)00024-8

    Article  CAS  Google Scholar 

  5. Mousavi, T., Karimzadeh, F., and Abbasi, M.H., Synthesis and characterization of nanocrystalline NiTi intermetallic by mechanical alloying, Mater. Sci. Eng. A, 2008, vol. 487, pp. 46–51. https://doi.org/10.1016/j.msea.2007.09.051

    Article  CAS  Google Scholar 

  6. Mousavi, T., Abbasi M.H., and Karimzadeh, F., Thermodynamic analysis of NiTi formation by mechanical alloying, Mater. Lett., 2009, vol. 63, pp. 786–788. https://doi.org/10.1016/j.matlet.2009.01.017

    Article  CAS  Google Scholar 

  7. Kochetov, N.A., Shchukin, A.S., and Seplyarskii, B.S., Influence of high-energy ball milling on SHS in the Ti–Ni system, Int. J. Self-Propag. High-Temp. Synth., 2019, vol. 28, no. 2, pp. 146–148. https://doi.org/10.3103/S1061386219020067

    Article  Google Scholar 

  8. Korchagin, M.A., Grigor’eva, T.F., Bokhonov, B.B., Sharafutdinov, M.R., Barinova, A.P., and Lyakhov, N.Z., Solid-state combustion in mechanically activated SHS systems: I. Effect of activation time on process parameters and combustion product composition, Combust. Explos. Shock Waves, 2003, vol. 39, no. 1, pp. 43–50. https://doi.org/10.1023/A:1022145201911

    Article  Google Scholar 

  9. Korchagin, M.A., Grigor’eva, T.F., Bokhonov, B.B., Sharafutdinov, M.R., Barinova, A.P., and Lyakhov, N.Z., Solid-state combustion in mechanically activated SHS systems: II. Effect of mechanical activation conditions on process parameters and combustion product composition, Combust. Explos. Shock Waves, 2003, vol. 39, no. 1, pp. 51–58. https://doi.org/10.1023/A:1022197218749

    Article  CAS  Google Scholar 

  10. Itin, V.I., Monasevich, T.V., and Bratchikov, A.D., Effect of mechanical activation on the regularities of self-propagating high-temperature synthesis in the titanium–nickel system, Combust. Explos. Shock Waves, 1997, vol. 33, no. 5, pp. 553–555. https://doi.org/10.1007/BF02672741

    Article  Google Scholar 

  11. Karolus, M. and Panek, J., Nanostructured Ni–Ti alloys obtained by mechanical synthesis and heat treatment, J. Alloys Comp., 2016, vol. 658, pp. 709–715. https://doi.org/10.1016/j.jallcom.2015.10.286

    Article  CAS  Google Scholar 

  12. Shkoda, O.A., Thermal explosion in Ti–Ni blends: Influence of mechanocomposite size, Int. J. Self-Propag. High-Temp. Synth., 2015, vol. 24, no. 3, pp. 128–131. https://doi.org/10.3103/S1061386215030115

    Article  CAS  Google Scholar 

  13. Shkoda, O.A., Thermal explosion in Ti–Ni blends: Role of inner mechanocomposite structure, Int. J. Self-Propag. High-Temp. Synth., 2015, vol. 24, no. 4, pp. 246–250. https://doi.org/10.3103/S1061386215040135

    Article  CAS  Google Scholar 

  14. Ye, L.L., Liu, Z.G., Raviprasad, K., Quan, M.X., Umemoto, M., and Hu, Z.Q., Consolidation of MA amorphous NiTi powders by spark plasma sintering, Mater. Sci. Eng. A, 1998, vol. 241, pp. 290–293. https://doi.org/10.1016/S0921-5093(97)00505-4

    Article  Google Scholar 

  15. Terunuma, Y. and Nagumo, M., Structural relaxation in amorphous Ni50Ti50 alloy prepared by mechanical alloying, Mater. Trans. JIM, 1995, vol. 36, no. 7, pp. 842–847. https://doi.org/10.2320/matertrans1989.36.842

    Article  CAS  Google Scholar 

  16. Takasaki, A., Mechanical alloying of the Ti–Ni system, Phys. Status Solidi A, 1998, vol. 169, pp. 183–191. https://doi.org/10.1002/(SICI)1521-396X(199810)169:2<183::AID-PSSA183>3.0.CO;2-N

    Article  CAS  Google Scholar 

  17. Ghadimi, M., Shokuhfar, A., Rostami, H.R., and Ghaffari, M., Effects of milling and annealing on formation and structural characterization of nanocrystalline intermetallic compounds from Ni–Ti elemental powders, Mater. Lett., 2012, vol. 80, pp. 181–183. https://doi.org/10.1016/j.matlet.2012.04.098

    Article  CAS  Google Scholar 

  18. Rogachev, A.S. and Mukasyan, A.S., Combustion for Material Synthesis, Boca Raton–London–New York: CRC Press, 2015, Ch. 3.

    Google Scholar 

  19. Rogachev, A.S. and Mukasyan, A.S., Combustion of heterogeneous nanostructural systems (Review), Combust. Explos. Shock Waves, 2010, vol. 46, no. 3, pp. 243–246. https://doi.org/10.1007/s10573-010-0036-2

    Article  Google Scholar 

  20. Wen, C.E., Kobayashi, K., Sugiuama, A., Nishio, T., and Matsumoto, A., Synthesis of nanocrystallite by mechanical alloying and in situ observation of their combustion phase transformation in Al3Ti, J. Mater. Sci., 2000, vol. 35, pp. 2099–2105. https://doi.org/10.1023/A:1004763713031

    Article  CAS  Google Scholar 

  21. Khina, B.B., Effect of mechanical activation on SHS: Physicochemical mechanism, Int. J. Self-Propag. High-Temp. Synth., 2008, vol. 17, no. 4, pp. 211–217. https://doi.org/10.3103/S1061386208040018

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Dr. I.D. Kovalev for his kind help in XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. A. Kochetov or B. S. Seplyarsii.

Additional information

Translated by Yu. Scheck

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochetov, N.A., Seplyarsii, B.S. Mechanoactivated SHS in the Ti–Ni System: Influence of Preheating Temperature. Int. J Self-Propag. High-Temp. Synth. 29, 162–166 (2020). https://doi.org/10.3103/S1061386220030048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386220030048

Keywords:

Navigation