Skip to main content
Log in

Combustion of Si–C Mixtures in Nitrogen Gas: Impact of Iron-Containing Additives

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

The effect of iron-containing catalysts–FeCl3 · 6H2O, Fe2(C2O4)3 · 5H2O, and Fe(NO3)3 · 9H2O–on phase composition, morphology, and particle size of products formed upon combustion of Si–C mixtures in nitrogen gas. Composition and granulometry of combustion products were found to depend on a type and amount of the above additives to green composition. The results may turn interesting for researchers active in the synthesis of refractory silicon compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barinova, T.V. and Borovinskaya, I.P., Some specific features of the combustion of silicon in nitrogen in the presence of organic additives, Inorg. Mater., 2014, vol. 50, no. 11, pp. 1078–1082. doi https://doi.org/10.1134/S0020168514100045

    Article  Google Scholar 

  2. Barinova, T.V., Borovinskaya, I. P., Ignat’eva, T.I., Barinov, Yu.N., and Shchukin, A.S., Polycrystalline silicon nitride fibers by combustion synthesis, Int. J. Self-Propag. High-Temp. Synth., 2016, vol. 25, no. 4, pp. 224–228. doi https://doi.org/10.3103/S1061386216040038

    Article  Google Scholar 

  3. Barinova, T.V., Borovinskaya, I.P., Barinov, Yu.N., Kovalev, I.D., and Shchukin, A.S., Polycrystalline silicon nitride fibers by SHS: Impact of ammonium acetate and ferric chloride additives, Int. J. Self-Prop. High-Temp. Synth., 2018, vol. 27, no. 2, pp. 92–97. doi https://doi.org/10.3103/S106138621802005X

    Article  Google Scholar 

  4. Kosolapova, T.Ya., Andreeva, T.V., Bartnitskaya, T.B., Gnesin, G.G., Makarenko, G.N., Osipova, I.I., and Prilutskii, E.V., Nemetallicheskie tugoplavkie soedineniya (Nonmetal Refractory Compounds), Moscow: Metallurgiya, 1985, pp. 146–211.

    Google Scholar 

  5. Huang, J., Huang, Z., Zhang, S., Fang, M., and Liu, Y., Si3N4–SiC composites reinforced by in situ Co-catalyzed Si3N4 nanofibers, J. Nanomater, 2014, article ID 752378. https://doi.org/10.1155/2014/752378.

    Google Scholar 

  6. Agrafiotis, Ch.C., Lis, J., Puszynski, J.A., and Hlavacek, V., Combustion synthesis of silicon nitride-silicon carbide composites, J. Am. Ceram. Soc., 1990, vol. 73, no. 11, pp. 3214–3517.

    Article  Google Scholar 

  7. Studenikin, I.A. and Grachev, V.V., Synthesis of silicon oxynitride by infiltration-mediated combustion, Int. J. Self-Prop. High-Temp. Synth., 2008, vol. 17, no. 4, pp. 237–241. doi https://doi.org/10.3103/S106138620804006

    Article  Google Scholar 

  8. Kata, D. and Pumpuch, R., Combustion synthesis of multiphase powders in the Si–C–N system, Solid State Ionics, 1997, vols. 101–103, pp. 65–70.

    Google Scholar 

  9. Cheng, H., Li, Y., Kroke, E., and Herkenhoff, S., In situ synthesis of Si2N2O/Si3N4 composite ceramics using polysilyloxycarbodiimide precursors, J. Eur. Ceram. Soc., 2013, vol. 33, pp. 2181–2189. https://doi.org/10.1016/j.jeurceramsoc.2013.02.029

    Article  Google Scholar 

  10. Barinova, T.V. and Borovinskaya, I.P., Combustion of silicon powders containing organic additives in nitrogen gas under pressure: Composition of combustion products, Int. J. Self-Propag. High-Temp. Synth., 2009, vol. 18, no. 1, pp. 30–33. doi https://doi.org/10.3103/S1061386209010063

    Article  Google Scholar 

  11. Qian, B., Li, H., Yang, Z., Zhang, Y., Su, Y., Wei, H., and Zhang, Y., Inverted SiC nanoneedles grown on carbon fibers by a two-crucible method without catalyst, J. Cryst. Growth, 2012, vol. 338, pp. 6–11. doi https://doi.org/10.1016/j.jcrysgro.2011.09.042

    Article  Google Scholar 

  12. Wieczorek-Ciurowa, K. and Kozak, A.J., The thermal decomposition of Fe(NO3)3, J. Therm. Anal. Calorim., 1999, vol. 58, pp. 647–651.

    Article  Google Scholar 

  13. Suzdalev, I.P., Maksimov, Yu.V., Imshennik, V.K., Novichikhin, S.V., Matveev, V.V., Tret’yakov, Yu.D., Lukashin, A.V., Eliseev, A.A., Malygin, A.A., and Sosnov, A.A., Structural hierarchy and magnetic properties of nanostructured iron oxides, Ross. Nanotekhnol., 2006, vol. 1, nos. 1–2, pp. 134–141.

    Google Scholar 

  14. Zakorzhevskii, V.V. and Borovinskaya, I.P., SHS of α-Si3N4 from fine Si powders in the presence of blowing agents, Int. J. Self-Propag. High-Temp. Synth, 2011, vol. 20, no. 3, pp. 156–160. doi https://doi.org/10.3103/S1061386211030162

    Article  Google Scholar 

  15. Liu, S., Fang, M., Huang, Z., Huang, J., Ji, H., Liu, H., Liu, Y., and Wu, X., Fe(NO3)3-assisted large-scale synthesis of Si3N4 nanobelts from quartz and graphite by carbothermal reduction-nitridation and their photoluminescence properties, Sci. Rep., 2015, vol. 5, 8998. doi https://doi.org/10.1038/srep08998

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. V. Barinova or I. D. Kovalev.

Additional information

† Deceased.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barinova, T.V., Borovinskaya, I.P., Barinov, V.Y. et al. Combustion of Si–C Mixtures in Nitrogen Gas: Impact of Iron-Containing Additives. Int. J Self-Propag. High-Temp. Synth. 28, 39–44 (2019). https://doi.org/10.3103/S1061386219010047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386219010047

Keywords

Navigation