Skip to main content
Log in

Abstract

The application of the SHS reactions yielding TiC coupled with the reduction of Fe from iron oxide to preparation of TiC–Fe powders from plain and granulated green mixtures was overviewed with special emphasis on (Fe2O3 + 2Al)–(Ti + C) (I) and (Fe2O3 + 3C)–(Ti + C) (II) compound mixtures. In case I of aluminothermic reduction, green (Ti + C) + x(Fe2O3 + 2Al) charges were prepared as a mixture of granules prepared separately from thermite (Fe2O3 + 2Al) and carbide (Ti + C) blends. In case II of carbothermic reduction, green (Ti + C) + x(Fe2O3 + 3C) mixtures were used without preliminary granulation. In both cases, combustion in an open reactor proceeded steadily without material splashing and yielded highly porous Fe(Al)–Fe3Al–Al2O3–TiC or TiC–Fe cermets that can be easily grinded to get abrasive powders. The above reactions are energy saving, technically simple, cost effective, and rather promising for R & D of industrial-scale processes to fabricate powdered TiC–Fe cermets to be used as abrasive materials, wear-resistant coatings, and catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Merzhanov, A.G., Thermally coupled pro cesses of self- propagating high-temperature synthesis, Dokl. Phys. Chem., 2010, vol. 434, part 2, pp. 159–162. doi https://doi.org/10.1134/S0012501610100015

    Article  Google Scholar 

  2. Kharatyan, S.L. and Merzhanov, A.G., Coupled SHS reactions as a useful tool for synthesis of materials: An overview, Int. J. Self-Propag. High-Temp. Synth., 2012, vol. 21, no. 1, pp. 59–73. doi https://doi.org/10.3103/S1061386212010074

    Article  Google Scholar 

  3. Kiparisov, S.S., Levinskii, Yu.V., and Petrov, A.P., Karbid titana: Poluchenie, svoistva, primenenie (Titanium Carbide: Preparation, Properties, and Application), Moscow: Metallurgiya, 1987.

    Google Scholar 

  4. Parashivamurthy, K.I., Kumar, R.K., Seetharamu, S., and Chandrasekharaiah, M.N., Review of TiC reinforced steel composites, J. Mater. Sci., 2001, vol. 36, no. 18, pp. 4519–4530.

    Article  Google Scholar 

  5. Khalili, A., Goodarzi, M., Mojtahedi, M., Torkamany, M.J., Solidification microstructure of in-situ laser-synthesized Fe–TiC hard coating, Surf. Coat. Technol. A, 2016, vol. 307, no. 15, pp. 747–752. doi https://doi.org/10.1016/j.surfcoat.2016.09.051

    Article  Google Scholar 

  6. Krymskii, M.D., Dyad’ko, E.G., Muchnik, S.V., and Kochura, Yu.S., Magneto-abrasive material with corundum and titanium carbide, Powder Metall. Met. Ceram., 1984, vol. 23, no. 11, pp. 855–859.

    Google Scholar 

  7. Das, K., Bandhopadhyay, T.K., and Das, S., A review on the various synthesis routes of TiC reinforced ferrous based composites, J. Mater. Sci., 2002, vol. 37, no. 18, pp. 3881–3892. doi https://doi.org/10.1023/A:1019699205003

    Article  Google Scholar 

  8. Jing, W. and Yisan, W., In-situ production of Fe–TiC composite, Mater. Lett., 2007, vol. 61, no. 22, pp. 4393–4395. doi https://doi.org/10.1016/j.matlet.2007.02.011

    Article  Google Scholar 

  9. Kim, J.M., Park, J.S., and Yun, H.S., Microstructure and mechanical properties of TiC nanoparticle-reinforced iron-matrix composites, Strength Mater. (Kiev), 2014, no. 2, pp. 29–36.

    Google Scholar 

  10. Zhu, H., Dong, K., Wang, H., Huang, J., Li, J., and Xia, Z., Reaction mechanisms of the TiC/Fe composite fabricated by exothermic dispersion from Fe–Ti–C elemental system, Powder Technol., 2013, vol. 246, pp. 456–461. doi https://doi.org/10.1016/j.powtec.2013.06.002

    Article  Google Scholar 

  11. Lee, J., Lee, D., Song, M.H., Rhee, W., Ryu, H.J., and Hong, S.H., In-situ synthesis of TiC/Fe alloy composites with high strength and hardness by reactive sintering, J. Mater. Sci. Technol., 2017. https://doi.org/10.1016/j.jmst.2017.03.006

  12. Li, B., Liu, Y., Cao, H., He, L., and Li, J., Rapid fabrication of in situ TiC particulates reinforced Fe-based composites by spark plasma sintering, Mater. Lett., 2009, vol. 63, no. 23, pp. 2010–2012. doi https://doi.org/10.1016/j.matlet.2009.06.026

    Article  Google Scholar 

  13. Kattamis, T.Z. and Suganuma, T., Solidification processing and tribological behavior of particulate TiC–ferrous matrix composites, Mater. Sci. Eng. A, 1990, vol. 128, no. 2, pp. 241–252. doi https://doi.org/10.1016/0921-5093(90)90232-R

    Article  Google Scholar 

  14. Terry, B.S. and Chinyamakobvu, O.S., In situ production of Fe–TiC composite by reactions in liquid iron alloys, J. Mater. Sci. Lett., 1991, vol. 10, no. 11, pp. 628–629. doi https://doi.org/10.1007/BF00723359

    Article  Google Scholar 

  15. Popov, A.A. and Gasik, M.M., Rapidly solidified Fe–TiC composites: Thermodynamics and the peculiarities of microstructure formation in situ, Scr. Mater., 1996, vol. 35, no. 5, pp. 629–634. doi https://doi.org/10.1016/1359-6462(96)00199-6

    Article  Google Scholar 

  16. Razavi, M., Yaghmaee, M.S., Rahimipour, M.R., and Razavi-Tousi, S.S., The effect of production method on properties of Fe–TiC composite, Int. J. Miner. Process., 2010, vol. 94, nos. 3–4, pp. 97–100. doi https://doi.org/10.1016/j.minpro.2010.01.002

    Article  Google Scholar 

  17. Terry, B.S. and Chinyamakobvu, O.S., Carbothermic reduction of ilmenite and rutile as means of production of iron based Ti(O,C) metal matrix composites, Mater. Sci. Technol., 1991, vol. 7, no. 9, pp. 842–848. doi https://doi.org/10.1179/mst.1991.7.9.842

    Article  Google Scholar 

  18. Chen, Y., Ball milling assisted low temperature formation of iron–TiC composite, Scr. Mater., 1997, vol. 36, no. 9, pp. 989–993. doi https://doi.org/10.1016/S1359-6462(96)00504-0

    Article  Google Scholar 

  19. El-Sadek, M.H., Morsi, M.B., El-Barawy, K., and El-Didamony, H.A., Mechanochemical synthesis of Fe–TiC composite from Egyptian ilmenite ore, Int. J. Miner. Process., 2013, vol. 120, no. 10, pp. 39–42. doi https://doi.org/10.1016/j.minpro.2013.02.004

    Article  Google Scholar 

  20. Chrysanthou, A., Self-propagating high-temperature synthesis of iron- and copper-matrix cermets, Adv. Sci. Techol., 2010, vol. 63, pp. 273–281. doi https://doi.org/10.4028/www.scientific.net/AST.63.273

    Article  Google Scholar 

  21. Dyad’ko, E.G., Sharivker, S.Yu., and Karyuk, G.G., Magneto-vortical intermixing of green mixtures for SHS, Abstr. II All-Union Conf. on Technol. Combustion, Chernogolovka, 1978, p. 3.

    Google Scholar 

  22. Sharivker, S.Yu., Dyad’ko, E.G., Karyuk, G.G., Merzhanov, A.G., Moshkovskii, E.I., Mamyan, S.S., Krizhanovskii, S.S., Aranovich, A.O., Popolnskii, S.M., and Borovinskaya, I.P., USSR Inventor’s Certificate no. 836991, 1978.

  23. Dyad’ko, SHS of TiC- and Al2O3-based materials for abrasive and magneto-abrasive processing, Cand. Sci. (Eng.) Dissertation, Frantsevich Inst. Mater. Sci., Kiev, 1988.

    Google Scholar 

  24. Saidi, A., Chrysanthou, A., Wood, J.V., and Kellie, J.L.F., Characteristics of combustion synthesis of TiC and Fe-TiC composites, J. Mater. Sci, 1994, vol. 29, no. 19, pp. 4993–4998. doi https://doi.org/10.1007/BF01151089

    Article  Google Scholar 

  25. Saidi, A., Chrysanthou, A., Wood, J.V., and Kellie, J.L.F., Preparation of Fe–TiC composites by the thermal explosion mode of combustion synthesis, Ceram. Int., 1997, vol. 23, no. 2, pp. 185–189. doi https://doi.org/10.1016/S0272-8842(96)00022-3

    Article  Google Scholar 

  26. Bendjemil, B., Zemmour, K., Guerioune, M., Gunth, A., Leonhardt, A., Langlois, P., and Vrel, D., Study on the synthesis and structural characterization of TiC/Fe cermets by SHS and thermal explosion, Int. J. Self-Propag. High-Temp. Synth., 2006, vol. 15, no. 1, pp. 85–98.

    Google Scholar 

  27. Licheri, R., Orru, R., Cao, G., Crippa, A., and Scholz, R., Self-propagating combustion synthesis and plasma spraying deposition of TiC–Fe powders, Ceram. Int., 2003, vol. 29, no. 5, pp. 519–526. doi https://doi.org/10.1016/S0272-8842(02)00196-7

    Article  Google Scholar 

  28. Khoshhal, R., Soltanieh, M., and Boutorabi, M.A., Formation mechanism and synthesis of Fe–TiC/Al2O3 composite by ilmenite, aluminum and graphite, Int. J. Refract. Met. Hard Mater., 2014, vol. 45, no. 1, pp. 53–57. doi https://doi.org/10.1016/j.ijrmhm.2014.03.002

    Article  Google Scholar 

  29. Persson, P., Jarfors, A.E.W., and Savage, S., Self-propagating high-temperature synthesis and liquid-phase sintering of TiC/Fe composites, J. Mater. Process. Technol., 2002, vol. 127, no. 2, pp. 131–139. doi https://doi.org/10.1016/S0924-0136(02)00113-9

    Article  Google Scholar 

  30. Gowtam, D.S., Ziyauddin, M., Mohape M., Sontakke, S.S., Deshmukh, V.P., and Shah, A.K., In situ TiC-reinforced austenitic steel composite by self-propagating high temperature synthesis, Int. J. Self-Propag. High-Temp. Synth., 2007, vol. 16, no. 2, pp. 70–78. doi https://doi.org/10.3103/S1061386207020033

    Article  Google Scholar 

  31. Vial, E., Thermite Welding, Lindsay Publications, 2009. https://openlibrary.org/publishers/Lindsay_Publications.

    Google Scholar 

  32. Kuvshinova, N.N. and Kazakov, Yu.V., Thermite mixture for exothermic curing of small defects in steel castings, Metall. Mashinostr., 2012, no. 2, pp. 33–36.

    Google Scholar 

  33. Amosov, A.P., Makarenko, A.G., Samboruk, A.R., Seplyarskii, B.S., Samboruk, A.A., Gerasimov, I.O., Orlov, A.V., and Yatsenko, V.V., Effect of batch pelletizing on a course of SHS reactions: An overwiew, Int. J. Self-Propag. High-Temp. Synth., 2010, vol. 19, no. 1, pp. 70–77. doi https://doi.org/10.3103/S1061386210010127

    Article  Google Scholar 

  34. Yatsenko, V.V., Samboruk, A.R., and Amosov, A.P., Metallothermic reduction of metal from granulated green mixtures, Izv. Samarsk. Nauchn. Tsentra Ross. Akad. Nauk, 2010, no. 4, pp. 298–305.

    Google Scholar 

  35. Amosov, A.P., Samboruk, A.R., Yatsenko, I.V., and Yatsenko, V.V., Fabrication of composite powders based on titanium carbide and iron by SHS with reducing stage, Abstr. XIII Int. Symp. on SHS, Antalya (Turkey), 2015, pp. 95–96.

    Google Scholar 

  36. Yatsenko, I.V., Samboruk, A.R., and Kuznets, E.A., SHS of FeAl–Fe3Al–Al2O3–TiC granules, Vestn. Samarsk. Gos. Tekh. Univ., 2017, no. 1, pp. 165–173.

    Google Scholar 

  37. Yatsenko, I.V., Yatsenko, V.V., Amosov, A.P., and Samboruk, A.R., Fe reduction by carbon during self-propagating high-temperature synthesis of Fe–TiC composite, Key Eng. Mater., 2016, vol. 685, pp. 768–771. doi https://doi.org/10.4028/www.scientific.net/KEM.685.768

    Article  Google Scholar 

  38. Sibileva, S.V. and Nefedova, N.V., Preparation of deposited Fe-based catalysts for synthesis of ammonia, Usp. Khim. Khim. Tekhnol., 2008, vol. 22, no. 10, pp. 9–13.

    Google Scholar 

  39. Lubkowski, K., Arabczyk, W., Grzmil, B., Michalkievicz, B., and Pattek-Janczyk, A., Passivation and oxidation of an ammonia iron catalyst, Appl. Catal. A, 2007, vol. 329, pp. 137–147. doi https://doi.org/10.1016/j.apcata.2007.07.006

    Article  Google Scholar 

  40. Kirgina, M.V., Levashova, A.I., Popok, E.V., and Chekantsev, N.V., Finely dispersed catalyst for synthesis of hydrocarbons from CO and H2 by electroexplosion of iron powder, Izv. Vyssh, Uchebn. Zaved. Khim. Khim Tekhnol., 2014, vol. 57, no. 11, pp. 57–59.

    Google Scholar 

  41. Popok, E.V., Levashova, A.I., Chekantsev, N.V., Kirgina, M.V., and Rafegerst, K.V., Ultradispersed hydrocarbon synthesis catalyst from CO and H2 based on electroexplosion of iron powder, Procedia Chem., 2014, vol. 10, pp. 20–24. doi https://doi.org/10.1016/j.proche.2014.10.005

    Article  Google Scholar 

  42. Ibrahim, A.A., Fakeeh, A.H., Al-Fatesh, A.S., Abasaeed, A.E., and Khan, W.U., Methane decomposition over iron catalyst for hydrogen production, Int. J. Hydrogen Energy, 2015, vol. 40, no. 24, pp. 7593–7600. doi https://doi.org/10.1016/j.ijhydene.2014.10.058

    Article  Google Scholar 

  43. Kirchner, J., Anolleck, J.K., Lösch, H., and Kureti, S., Methanation of CO2 on iron based catalysts, Appl. Catal. B, 2018, vol. 223, pp. 47–59. doi https://doi.org/10.1016/j.apcatb.2017.06.025

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Amosov.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amosov, A.P., Samboruk, A.R., Yatsenko, I.V. et al. TiC–Fe Powders by Coupled SHS Reactions: An Overview. Int. J Self-Propag. High-Temp. Synth. 28, 10–17 (2019). https://doi.org/10.3103/S1061386219010023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386219010023

Keywords

Navigation