Skip to main content

Solution Combustion Synthesis of Complex Oxide Semiconductors

Abstract

This is a perspective of the role that combustion synthesis, specifically solution combustion synthesis, has played in the development of ternary and quaternary metal oxide semiconductors, and materials derived from these compounds such as composites, solid solutions, and doped samples. The attributes of materials, collectively termed ‘complex oxides’ within the context of this discussion, are discussed in terms of their applicability in the generation of solar fuels from water splitting and CO2 reduction, and environmental pollution remediation via heterogeneous photocatalysis.

This is a preview of subscription content, access via your institution.

References

  1. Kobayashi, Y., Yoshihiro, T., and Kageyama, H., Property engineering in perovskites via modification of anion chemistry, Annu. Rev. Mater. Sci., 2018, vol.48.

  2. Kageyama, H., Hayashi, K., Maeda, K., Attfield, J.P., Hiroi, Z., Rondinelli, J., and Poeppelmeir, K.R., Expanding frontiers in materials chemistry and physics with multiple anions, Nature Commun., 2018, vol. 9, article number772.

  3. McCarroll, W.H. and Ramanujachary, K.V., Encycolpaedia of Inorganic Chemistry, Ch. 3: Oxides: Solid State Chemistry, New York: Wiley, 2006.

    Google Scholar 

  4. Rajeshwar, K., Hossain, M.K., Macaluso, R.T., Janaky, C., Varga, A., and Kulesza, P.J., Copper oxidebased ternary and quaternary oxides: Where solid-state chemistry meets photoelectrochemistry (Review), J. Electrochem. Soc., 2018, vol. 165, pp. H3192–H3206.

    Article  Google Scholar 

  5. Rajeshwar, K., Toward a renewable energy future, in Solar Hydrogen Generation, Rajeshwar, K., McConnell, R., and Licht, S., Eds., New York: Academic, 2008, pp. 167–228.

    Chapter  Google Scholar 

  6. Rajeshwar, K., Solar energy conversion and environmental remediation using inorganic semiconductor–liquid interfaces: The road traveled and the way forward, J. Phys. Chem. Lett., 2011, vol. 2, pp. 1301–1309.

    Article  Google Scholar 

  7. Rajeshwar, K., Photoelectrochemistry and the environment, J. Appl. Electrochem., 1995, vol. 25, pp. 1067–1082.

    Article  Google Scholar 

  8. Bard, A.J. and Fox, M.A., Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen, Acc. Chem. Res., 1995, vol. 28, pp. 141–145.

    Article  Google Scholar 

  9. Wen, W. and Wu, J.M., Nanomaterials via solution combustion synthesis: A step nearer to controllability, RSC Adv., 2014, vol. 4, pp. 58090–58100.

    Article  Google Scholar 

  10. Mukasyan, A.S., Epstein, P., and Dinka, P., Solution combustion synthesis of nanomaterials, Proc. Combust. Inst., 2007, vol. 31, pp. 1789–1795.

    Article  Google Scholar 

  11. Aruna, S.T. and Mukasyan, A.S., Combustion synthesis and nanomaterials, Curr. Opin. Solid State Mater. Sci., 2008, vol. 12, pp. 44–50.

    Article  Google Scholar 

  12. Varma, A., Mukasyan, A.S., Rogachev, A.S., and Manukyan, K.V., Solution combustion synthesis of nanoscale materials, Chem. Rev., 2016, vol. 116, pp. 14493–14586.

    Article  Google Scholar 

  13. Li, F.T., Ran, J., Jaroniec, M., and Qiao, S.Z., Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion, Nanoscale, 2015, vol. 7, pp. 17590–17610.

    Article  Google Scholar 

  14. Hegde, M.S., Madras, G., and Patil, K.C., Noble metal ionic catalysts, Acc. Chem. Res., 2009, vol. 42, pp. 704–712.

    Article  Google Scholar 

  15. González-Cortés, S.L. and Imbert, F.E., Fundamentals, properties and applications of solid catalysts prepared by solution combustion synthesis (SCS), Appl. Catal., A, 2013, vol. 452, pp. 117–131.

    Article  Google Scholar 

  16. Rajeshwar, K. and de Tacconi, N.R., Solution combustion synthesis of oxide semiconductors for solar energy conversion and environmental remediation, Chem. Soc. Rev., 2009, vol. 38, no. 7, pp. 1984–1998.

    Article  Google Scholar 

  17. Patil, K.C., Hegde, M.S., Yanu, R., and Aruna, S.T., Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications, Singapore: World Scientific, 2008.

    Book  Google Scholar 

  18. Yu, X., Smith, J., Zhou, N., Zeng, L., Guo, P., Xia, Y., Alvarez, A., Aghion, S., Lin, H., Yu, J., Chang, R.P., Bedzyk, M.J., Ferragut, R., Marks, T.J., and Facchetti, A., Spray-combustion synthesis: Efficient solution route to high-performance oxide transistors, Proc. Natl. Acad. Sci. USA, 2015, vol. 112, pp. 3217–3222.

    Article  Google Scholar 

  19. Mukasyan, A.S. and Dinka, P., Novel approaches to solution-combustion synthesis of nanomaterials, Int. J. Self-Propag. High-Temp. Synth., 2007, vol. 16, no. 1, pp. 23–35.

    Article  Google Scholar 

  20. Akopdzhanyan, T.G. and Borovinskaya, I.P., AlON powders by SHS under nitrogen pressure with KClO4 as a booster, Int. J. Self-Propag. High-Temp. Synth., 2017, vol. 26, no. 4. pp. 244–247.

    Article  Google Scholar 

  21. Zhang, Z. and Wang, W., Solution combustion synthesis of CaFe2O4 nanocrystal as a magnetically separable photocatalyst, Mater. Lett., 2014, vol. 133, pp. 212–215.

    Article  Google Scholar 

  22. Hossain, M.K., Samu, G.F., Gandha, K., Santhanagopalan, S., Liu, J.P., Janáky, C., and Rajeshwar, K., Solution combustion synthesis, characterization, and photocatalytic activity of CuBi2O4 and its nanocomposites with CuO and a-Bi2O3, J. Phys. Chem. C, 2017, vol. 121, pp. 8252–6261.

    Article  Google Scholar 

  23. Kumar, A., Rout, L., Achary, L.S.K., Mohanty, S.K. and Dash, P., A combustion synthesis route for magnetically separable graphene oxide–CuFe2O4–ZnO nanocomposites with enhanced solar light-mediated photocatalytic activity, New J. Chem., 2017, vol. 41, pp. 10568–10583.

    Article  Google Scholar 

  24. Chai, M.J., Chen, X.M., Zhao, Y., Liu, R.H., Zhao, J., and Li, F.T., Facile ionic liquid combustion synthesis and visible-light photocatalytic ability of mesoporous FeAl2O4 with high specific surface area, Chem. Lett., 2014, vol. 43, pp. 1743–1745.

    Article  Google Scholar 

  25. Mu, H.Y., Li, F.T., An, X.T., Liu, R.H., Li, Y.L., Qian, X., and Hu, Y.Q., One-step synthesis, electronic structure, and photocatalytic activity of earth-abundant visiblelight-driven FeAl2O4, Phys. Chem. Chem. Phys., 2017, vol. 19, pp. 9392–9401.

    Article  Google Scholar 

  26. Li, F.T., Zhao, Y., Liu, Y., Hao, Y.J., Liu, R.H., and Zhao, D.S., Solution combustion synthesis and visible light-induced photocatalytic activity of mixed amorphous and crystalline MgAl2O4 nanopowders, Chem. Eng. J., 2011, vol. 173, pp. 750–759.

    Article  Google Scholar 

  27. Shetty, K., Prathibha, B.S., Rangappa, D., Anantharaju, K.S., Nagaswarupa, H.P., Nagabhushana, H., and Prashantha, S.C., Photocatalytic study for fabricated Ag doped and undoped MgFe2O4 nanoparticles, Mater. Today, 2017, vol. 4, no. 11, pp. 11764–11772.

    Article  Google Scholar 

  28. Meena, S., Renuka, L., Anantharaju, K.S., Vidya, Y.S., Nagaswarupa, H.P., Prashantha, S.C., and Nagabhushana, H., Optical, electrochemical and photocatalytic properties of sunlight driven Cu doped manganese ferrite synthesized by solution combustion synthesis, Mater. Today, 2017, vol. 4, no. 11, pp. 11773–11781.

    Article  Google Scholar 

  29. Zhang, D., Pu, X., Du, K., Yu, Y.M., Shim, J.J., Cai, P., Kim, S.I., and Seo, H.J., Combustion synthesis of magnetic Ag/NiFe2O4 composites with enhanced visible-light photocatalytic properties, Sep. Purif. Technol., 2014, vol. 137, pp. 82–85.

    Article  Google Scholar 

  30. Kelkar, S.A., Shaikh, P.A., Pachfule, P., and Ogale, S.B., Nanostructured Cd2SnO4 as an energy harvesting photoanode for solar water splitting, Energy Environ. Sci., 2012, vol. 5, no. 2, pp. 5681–5685.

    Article  Google Scholar 

  31. Behera, A., Kandi, D., Majhi, S.M., Martha, S., and Parida, K., Facile synthesis of ZnFe2O4 photocatalysts for decolorization of organic dyes under solar irradiation, Beilstein J. Nanotechnol., 2018, vol. 9, pp. 436–446.

    Article  Google Scholar 

  32. Li, L. and Wang, X., Self-propagating combustion synthesis and synergistic photocatalytic activity of GdFeO3 nanoparticles, J. Sol-Gel Sci. Technol., 2016, vol. 79, pp. 107–113.

    Article  Google Scholar 

  33. Parida, K.M., Reddy, K.H., Martha, S., Das, D.P., and Biswal, N., Fabrication of nanocrystalline LaFeO3: An efficient sol–gel auto-combustion assisted visible light responsive photocatalyst for water decomposition, Int. J. Hydrogen Energy, 2010, vol. 35, pp. 12161–12168.

    Article  Google Scholar 

  34. Li, F.T., Liu, Y., Sun, Z.M., Liu, R.H., Kou, C.G., Zhao, Y. and Zhao, D.S., Facile preparation of porous LaFeO3 nanomaterial by self-combustion of ionic liquids, Mater. Lett., 2011, vol. 65, pp. 406–408.

    Article  Google Scholar 

  35. Li, Y., Yao, S., Wen, W., Xue, L., and Yan, Y., Sol–gel combustion synthesis and visible-light-driven photocatalytic property of perovskite LaNiO3, J. Alloys Compd., 2010, vol. 491, pp. 560–564.

    Article  Google Scholar 

  36. Xue, H., Li, Z., Wang, X., and Fu, X., Studies on nanocrystalline (Sr,Pb)TiO3 solid solutions prepared via a facile self-propagating combustion method, J. Phys. Chem. Solids, 2007, vol. 68, pp. 2326–2331.

    Article  Google Scholar 

  37. Wu, L., Jimmy, C.Y., Zhang, L., Wang, X., and Li, S., Selective self-propagating combustion synthesis of hexagonal and orthorhombic nanocrystalline yttrium iron oxide, J. Solid State Chem., 2004, vol. 177, no. 10, pp. 3666–3674.

    Article  Google Scholar 

  38. Chen, Y., Yang, J., Wang, X., Feng, F., Zhang, Y., and Tang, Y., Synthesis YFeO3 by salt-assisted solution combustion method and its photocatalytic activity, J. Ceram. Soc. Jpn., 2014, vol. 122, pp. 146–150.

    Article  Google Scholar 

  39. Saha, D., Madras, G., and Row, T.G., Solution combustion synthesis of γ(L)-Bi2MoO6 and photocatalytic activity under solar radiation, Mater. Res. Bull., 2011, vol. 46, pp. 1252–1256.

    Article  Google Scholar 

  40. Zhang, Z., Wang, W., Shang, M., and Yin, W., Lowtemperature combustion synthesis of Bi2WO6 nanoparticles as a visible-light-driven photocatalyst, J. Hazard. Mater., 2010, vol. 177, pp. 1013–1018.

    Article  Google Scholar 

  41. Timmaji, H.K., Chanmanee, W., de Tacconi, N.R., and Rajeshwar, K., Solution combustion synthesis of BiVO4 nanoparticles: Effect of combustion precursors on the photocatalytic activity, J. Adv. Oxid. Technol., 2011, vol. 14, pp. 93–105.

    Google Scholar 

  42. Jiang, H.Q., Endo, H., Natori, H., Nagai, M., and Kobayashi, K., Fabrication and photoactivities of spherical-shaped BiVO4 photocatalysts through solution combustion synthesis method, J. Eur. Ceram. Soc., 2008, vol. 28, pp. 2955–2962.

    Article  Google Scholar 

  43. Pérez, U.G., Sepúlveda-Guzmán, S., Martínez-de la Cruz, A., and Méndez, U.O., Photocatalytic activity of BiVO4 nanospheres obtained by solution combustion synthesis using sodium carboxymethylcellulose, J. Mol. Catal. A: Chem., 2011, vol. 335, pp. 169–175.

    Article  Google Scholar 

  44. Nagabhushana, G.P., Nagaraju, G., and Chandrappa, G.T., Synthesis of bismuth vanadate: Its application in H2 evolution and sunlight-driven photodegradation, J. Mater. Chem. A, 2013, vol. 1, pp. 388–394.

    Article  Google Scholar 

  45. Thomas, A., Janáky, C., Samu, G.F., Huda, M.N., Sarker, P., Liu, J. P., Van Nguyen, V., Wang, E.H., Schug, K.A., and Rajeshwar, K., Time-and energyefficient solution combustion synthesis of binary metal tungstate nanoparticles with enhanced photocatalytic activity, ChemSusChem, 2015, vol. 8, pp. 1652–1663.

    Article  Google Scholar 

  46. Eranjaneya, H. and Chandrappa, G.T., Solution combustion synthesis of nano ZnWO4 photocatalyst, Trans. Indian Ceram. Soc., 2016, vol. 75, pp. 133–137.

    Article  Google Scholar 

  47. Veldurthi, N.K., Eswar, N.K., Singh, S.A., and Madras, G., Cocatalyst free Z-schematic enhanced H2 evolution over LaVO4/BiVO4 composite photocatalyst using Ag as an electron mediator, Appl. Catal., B, 2018, vol. 220, pp. 512–523.

    Article  Google Scholar 

  48. Bellakki, M.B., Baidya, T., Shivakumara, C., Vasanthacharya, N.Y., Hegde, M.S., and Madras, G., Synthesis, characterization, redox and photocatalytic properties of Ce1-xPdxVO4 (0 = x = 0.1), Appl. Catal., B, 2008, vol. 84, pp. 474–481.

    Article  Google Scholar 

  49. Saha, D., Madras, G., and Row, T.N.G., Synthesis and structure of Bi2Ce2O7: A new compound exhibiting high solar photocatalytic activity, Dalton Trans., 2012, vol. 41, pp. 9598–9600.

    Article  Google Scholar 

  50. Samu, G.F., Veres, Á., Endrodi, B., Varga, E., Rajeshwar, K., and Janáky, C., Bandgap-engineered quaternary MxBi2-xTi2O7 (M: Fe, Mn) semiconductor nanoparticles: Solution combustion synthesis, characterization, and photocatalysis, Appl. Catal., B, 2017, vol. 208, pp. 148–160.

    Article  Google Scholar 

  51. Xue, H., Zhang, Y., Xu, J., Liu, X., Qian, Q., Xiao, L., and Chen, Q., Facile one-pot synthesis of porous Ln2Ti2O7 (Ln = Nd, Gd, Er) with photocatalytic degradation performance for methyl orange, Catal. Commun., 2014, vol. 51, pp. 72–76.

    Article  Google Scholar 

  52. Sharma, V.M., Saha, D., Madras, G., and Row, T.G., Synthesis, structure, characterization and photocatalytic activity of Bi2Zr2O7 under solar radiation, RSC Adv., 2013, vol. 3, pp. 18938–18943.

    Article  Google Scholar 

  53. Sahoo, P.P., Madras, G., and Guru Row, T.N., Synthesis, characterization, and photocatalytic properties of ZrMo2O8, J. Phys. Chem. C, 2009, vol. 113, pp. 10661–10666.

    Article  Google Scholar 

  54. Kormányos, A., Thomas, A., Huda, M.N., Sarker, P., Liu, J.P., Poudyal, N., Janáky, C., and Rajeshwar, K., Solution combustion synthesis, characterization, and photoelectrochemistry of CuNb2O6 and ZnNb2O6 nanoparticles, J. Phys. Chem. C, 2016, vol. 120, pp. 16024–16034.

    Article  Google Scholar 

  55. Sahoo, P.P., Sumithra, S., Madras, G., and Guru Row, T.N., Synthesis, structure, negative thermal expansion, and photocatalytic property of Mo doped ZrV2O7, Inorg. Chem., 2011, vol. 50, pp. 8774–8781.

    Article  Google Scholar 

  56. de Tacconi, N.R., Timmaji, H.K., Chanmanee, W., Huda, M.N., Sarker, P., Janáky, C., and Rajeshwar, K., Photocatalytic generation of syngas using combustionsynthesized silver bismuth tungstate, Chem. Phys. Chem., 2012, vol. 13, pp. 2945–2955.

    Article  Google Scholar 

  57. Vegard, L., Die Konstitution der Mischkristalle und die Raumfüllung der Atome, Z. Phys., 1921, vol. 5, pp. 17–26.

    Article  Google Scholar 

  58. Hao, Y.J., Li, F.T., Chen, F., Chai, M.J., Liu, R.H. and Wang, X.J., In situ one-step combustion synthesis of Bi2O3/Bi2WO6 heterojunctions with notable visible light photocatalytic activities, Mater. Lett., 2014, vol. 124, pp. 1–3.

    Article  Google Scholar 

  59. Lv, D., Zhang, D., Pu, X., Kong, D., Lu, Z., Shao, X., Ma, H., and Dou, J., One-pot combustion synthesis of BiVO4/BiOCl composites with enhanced visible-light photocatalytic properties, Sep. Purif. Technol., 2017, vol. 174, pp. 97–103.

    Article  Google Scholar 

  60. Jiang, H.Q., Endo, H., Natori, H., Nagai, M., and Kobayashi, K., Fabrication and efficient photocatalytic degradation of methylene blue over CuO/BiVO4 composite under visible-light irradiation, Mater. Res. Bull., 2009, vol. 44, pp. 700–706.

    Article  Google Scholar 

  61. Lu, D., Zhang, D., Liu, X., Liu, Z., Hu, L., Pu, X., Ma, H., Li, D., and Dou, J., Magnetic NiFe2O4/BiOBr composites: One-pot combustion synthesis and enhanced visible-light photocatalytic properties, Sep. Purif. Technol., 2016, vol. 158, pp. 302–307.

    Article  Google Scholar 

  62. Jiang, H., Nagai, M., and Kobayashi, K., Enhanced photocatalytic activity for degradation of methylene blue over V2O5/BiVO4 composite, J. Alloys Compd., 2009, vol. 479, pp. 821–827.

    Article  Google Scholar 

  63. Wei, Z.X., Wang, Y., Liu, J.P., Xiao, C.M., and Zeng, W.W., Synthesis, magnetization and photocatalytic activity of LaFeO3 and LaFe0.5Mn0.5-xO3-δ, Mater. Chem. Phys., 2012, vol. 136, pp. 755–761.

    Article  Google Scholar 

  64. Dong, T., Li, Z., Ding, Z., Wu, L., Wang, X., and Fu, X., Characterizations and properties of Eu3+-doped ZnWO4 prepared via a facile self-propagating combustion method, Mater. Res. Bull., 2008, vol. 43, pp. 1694–1701.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Rajeshwar.

Additional information

The article is published in the original.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hossain, M.K., Kecsenovity, E., Varga, A. et al. Solution Combustion Synthesis of Complex Oxide Semiconductors. Int. J Self-Propag. High-Temp. Synth. 27, 129–140 (2018). https://doi.org/10.3103/S1061386218030032

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386218030032

Keywords

  • solution combustion synthesis
  • solar energy conversion
  • hydrogen evolution
  • photoexcitation
  • synthesis variables