Skip to main content
Log in

Abstract

The work aimed at preparation of the MgB2 doped with alloying metals (Al, Cu, Ag, Zn) by SHS in a mode of thermal explosion. The measured combustion temperatures fell within the range 940–1030°С. Detailed XRD analysis has shown that, among other selected metals, it is solely Al that can enter the MgB2 lattice. According to time-resolved XRD results, the formation of final product (Mg, Al)B2 in the Mg–Al–B system involved no intermediate phases. But in the Mg–Cu–B system, the volume reaction additionally yielded MgB4, Cu2Mg, and CuMg2 due to the presence of the liquid phase. In final products, the agglomerates of MgB2 grains had a size of 500–1000 nm, while the size of Cu2Mg and CuMg2 inclusions was within 0.5–2 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buzea, C. and Yamashita, T., Review of the superconducting properties of MgB2, Supercond. Sci. Technol., 2001, vol. 14, pp. R115–R146. doi 10.1088/0953-2048/14/11/201

    Article  Google Scholar 

  2. Canfield, P.C. and Bud’ko, S.L., Magnesium diboride: One year on, Phys. World, 2002, vol. 15, no. 1, pp. 29–34. https://doi.org/10.1088/2058-7058/15/1/36

    Article  Google Scholar 

  3. Ivanovskii, A.L., Medvedeva, N.I., Zubkov, V.G., and Bamburov, V.G., Synthesis, physicochemical properties, and materials science aspects of superconducting MgB2 and related phases, Russ. J. Inorg. Chem., 2002, vol. 47, no. 4, pp. 584–597.

    Google Scholar 

  4. Zhai, H.Y., Christen, H.M., White, C.W., Budai, J.D., Lowndes, D.H., and Meldram, A., Buried superconducting layers comprised of magnesium diboride nanocrystals formed by ion implantation, Appl. Phys. Lett., 2002, vol. 80, no. 25, pp. 4786–4788. http://dx.doi.org/10.1063/1.1488695

    Article  Google Scholar 

  5. Gümbel, A., Eckert, J., Fuchs, G., Nenkov, K., Müller, K.-H., and Schultz, L., Improved superconducting properties in nanocrystalline bulk MgB2, Appl. Phys. Lett., 2002, vol. 80, no. 15, pp. 2725–2427. http://dx.doi.org/10.1063/1.1469654

    Article  Google Scholar 

  6. Ivanovskii, A.L., Superconducting MgB2 and related compounds: Synthesis, properties, and electronic structure, Russ. Chem. Rev., 2001, vol. 70, no. 9, pp. 717–734. https://doi.org/10.1070/RC2001v070n09ABEH000675.

    Article  Google Scholar 

  7. Ma, J., Sun, A., Wei, G., Zheng, L., Yang G., and Zhang, X., Al-doping effects on the structural change of MgB2, J. Supercond. Novel Magn., 2010, vol. 23, pp. 187–191. doi 10.1007/s10948-009-0513-6

    Article  Google Scholar 

  8. Karpinski, J., Zhigadlo, N.D., Schuck, G., Kazakov, S.M., Batlogg, B., Rogacki, K., Puzniak, R., Jun, J., Müller, E., Wägli, P., Gonnelli, R., Daghero, D., Ummarino, G.A., and Stepanov, V.A., Al substitution in MgB2 crystals: Influence on superconducting and structural properties, Phys. Rev. B, 2005, vol. 71, no. 17, pp. 174506–174520. doi 10.1103/PhysRevB.71.174506

    Article  Google Scholar 

  9. Kazakov, S.M., Angst, M., Karpinski, J., Fita, I.M., and Puzniak, R., Substitution effect of Zn and Cu in MgB2 on Tc and structure, Solid State Commun., 2001, vol. 119, no. 1, pp. 1–5. doi 10.1016/S0038-1098(01)00207-1

    Article  Google Scholar 

  10. Tampieri, A., Celotti, G., Sprio, S., Rinaldi, D., Barucca, G., and Caciuffo, R., Effects of copper doping in MgB2 superconductor, Solid State Commun., 2002, vol. 121, nos. 9–10, pp. 497–500. http://doi.org/10.1016/S0038-1098(01)00514-2

    Article  Google Scholar 

  11. Cheng, C.H., Zhao, Y., Wang, L., and Zhang, H., Preparation, structure and superconductivity of Mg1‒xAgxB, Physica C, 2002, vol. 378–381, pp. 244–248. http://doi.org/10.1016/S0921-4534(02)01421-1

    Article  Google Scholar 

  12. Paranthaman, M., Thompson, J.R., and Christen, D.K., Effect of carbon-doping in bulk superconducting MgB2 samples, Physica C, 2001, vol. 355, nos. 1–2, pp. 1–5. http://doi.org/10.1016/S0921-4534(01)00424-5

    Article  Google Scholar 

  13. Prikhna, T.A., Modern superconductive materials for electrical machines and devices working on the principle of levitation, Low Temp. Phys., 2006, vol. 32, no. 4, pp. 505–517. http://dx.doi.org/10.1063/1.2199455

    Article  Google Scholar 

  14. Zlotnikov, I., Gotman, I., and Gutmanas, E.Y., Processing of dense bulk MgB2 superconductor via pressure-assisted thermal explosion mode of SHS, J. Eur. Ceram. Soc., 2005, vol. 25, no. 15, pp. 3517–3522. http://doi.org/10.1016/j.jeurceramsoc.2004.09.009

    Article  Google Scholar 

  15. Przybylski, K., Stobierski, L., Chmist, J., and Kołodziejczyk, A., Synthesis and properties of MgB2 obtained by SHS method, Physica C, 2003, vol. 387, nos. 1–2, pp. 148–152. http://doi.org/10.1016/S0921-4534(03)00661-0

    Article  Google Scholar 

  16. Rosenband, V. and Gany, A., Thermal explosion synthesis of magnesium diboride powder, Combust. Explos. Shock Waves, 2014, vol. 50, no. 6, pp. 653–657. doi 10.1134/S0010508214060057

    Article  Google Scholar 

  17. Kovalev, D.Yu., Potanin, A.Yu., Levashov, E.A., and Shkodich, N.F., Phase formation dynamics upon thermal explosion synthesis of magnesium diboride, Ceram. Int., 2016, vol. 42, no. 2, pp. 2951–2959. http://doi.org/10.1016/j.ceramint.2015.10.078

    Article  Google Scholar 

  18. Ma, Z., Liu, Yo., Shi, Q., Zhao, Q., and Gao, Z., The mechanism of accelerated phase formation of MgB2 by Cu-doping during low-temperature sintering, Mater. Res. Bull., 2009, vol. 44, no. 3, pp. 531–537. http://doi.org/10.1016/j.materresbull.2008.07.011

    Article  Google Scholar 

  19. Feng, W.J., Xia, T.D., Liu, T.Z., Zhao, W.J., and Wei, Z.Q., Synthesis and properties of Mg1–xCuxB2 bulk obtained by self-propagating high-temperature synthesis (SHS) method at low temperature, Physica C, 2005, vol. 425, nos. 3–4, pp. 144–148. http://doi.org/10.1016/j.physc.2005.07.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Potanin.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potanin, A.Y., Kovalev, D.Y., Pogozhev, Y.S. et al. Metal-Doped MgB2 by Thermal Explosion: A TRXRD Study. Int. J Self-Propag. High-Temp. Synth. 27, 18–25 (2018). https://doi.org/10.3103/S1061386218010065

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386218010065

Keywords

Navigation