Metal-Doped MgB2 by Thermal Explosion: A TRXRD Study

  • A. Yu. PotaninEmail author
  • D. Yu. Kovalev
  • Yu. S. Pogozhev
  • N. Yu. Khomenko


The work aimed at preparation of the MgB2 doped with alloying metals (Al, Cu, Ag, Zn) by SHS in a mode of thermal explosion. The measured combustion temperatures fell within the range 940–1030°С. Detailed XRD analysis has shown that, among other selected metals, it is solely Al that can enter the MgB2 lattice. According to time-resolved XRD results, the formation of final product (Mg, Al)B2 in the Mg–Al–B system involved no intermediate phases. But in the Mg–Cu–B system, the volume reaction additionally yielded MgB4, Cu2Mg, and CuMg2 due to the presence of the liquid phase. In final products, the agglomerates of MgB2 grains had a size of 500–1000 nm, while the size of Cu2Mg and CuMg2 inclusions was within 0.5–2 μm.


SHS thermal explosion MgB2 doping time-resolved XRD 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buzea, C. and Yamashita, T., Review of the superconducting properties of MgB2, Supercond. Sci. Technol., 2001, vol. 14, pp. R115–R146. doi 10.1088/0953-2048/14/11/201CrossRefGoogle Scholar
  2. 2.
    Canfield, P.C. and Bud’ko, S.L., Magnesium diboride: One year on, Phys. World, 2002, vol. 15, no. 1, pp. 29–34. Scholar
  3. 3.
    Ivanovskii, A.L., Medvedeva, N.I., Zubkov, V.G., and Bamburov, V.G., Synthesis, physicochemical properties, and materials science aspects of superconducting MgB2 and related phases, Russ. J. Inorg. Chem., 2002, vol. 47, no. 4, pp. 584–597.Google Scholar
  4. 4.
    Zhai, H.Y., Christen, H.M., White, C.W., Budai, J.D., Lowndes, D.H., and Meldram, A., Buried superconducting layers comprised of magnesium diboride nanocrystals formed by ion implantation, Appl. Phys. Lett., 2002, vol. 80, no. 25, pp. 4786–4788. Scholar
  5. 5.
    Gümbel, A., Eckert, J., Fuchs, G., Nenkov, K., Müller, K.-H., and Schultz, L., Improved superconducting properties in nanocrystalline bulk MgB2, Appl. Phys. Lett., 2002, vol. 80, no. 15, pp. 2725–2427. Scholar
  6. 6.
    Ivanovskii, A.L., Superconducting MgB2 and related compounds: Synthesis, properties, and electronic structure, Russ. Chem. Rev., 2001, vol. 70, no. 9, pp. 717–734. Scholar
  7. 7.
    Ma, J., Sun, A., Wei, G., Zheng, L., Yang G., and Zhang, X., Al-doping effects on the structural change of MgB2, J. Supercond. Novel Magn., 2010, vol. 23, pp. 187–191. doi 10.1007/s10948-009-0513-6CrossRefGoogle Scholar
  8. 8.
    Karpinski, J., Zhigadlo, N.D., Schuck, G., Kazakov, S.M., Batlogg, B., Rogacki, K., Puzniak, R., Jun, J., Müller, E., Wägli, P., Gonnelli, R., Daghero, D., Ummarino, G.A., and Stepanov, V.A., Al substitution in MgB2 crystals: Influence on superconducting and structural properties, Phys. Rev. B, 2005, vol. 71, no. 17, pp. 174506–174520. doi 10.1103/PhysRevB.71.174506CrossRefGoogle Scholar
  9. 9.
    Kazakov, S.M., Angst, M., Karpinski, J., Fita, I.M., and Puzniak, R., Substitution effect of Zn and Cu in MgB2 on Tc and structure, Solid State Commun., 2001, vol. 119, no. 1, pp. 1–5. doi 10.1016/S0038-1098(01)00207-1CrossRefGoogle Scholar
  10. 10.
    Tampieri, A., Celotti, G., Sprio, S., Rinaldi, D., Barucca, G., and Caciuffo, R., Effects of copper doping in MgB2 superconductor, Solid State Commun., 2002, vol. 121, nos. 9–10, pp. 497–500. Scholar
  11. 11.
    Cheng, C.H., Zhao, Y., Wang, L., and Zhang, H., Preparation, structure and superconductivity of Mg1‒xAgxB, Physica C, 2002, vol. 378–381, pp. 244–248. Scholar
  12. 12.
    Paranthaman, M., Thompson, J.R., and Christen, D.K., Effect of carbon-doping in bulk superconducting MgB2 samples, Physica C, 2001, vol. 355, nos. 1–2, pp. 1–5. Scholar
  13. 13.
    Prikhna, T.A., Modern superconductive materials for electrical machines and devices working on the principle of levitation, Low Temp. Phys., 2006, vol. 32, no. 4, pp. 505–517. Scholar
  14. 14.
    Zlotnikov, I., Gotman, I., and Gutmanas, E.Y., Processing of dense bulk MgB2 superconductor via pressure-assisted thermal explosion mode of SHS, J. Eur. Ceram. Soc., 2005, vol. 25, no. 15, pp. 3517–3522. Scholar
  15. 15.
    Przybylski, K., Stobierski, L., Chmist, J., and Kołodziejczyk, A., Synthesis and properties of MgB2 obtained by SHS method, Physica C, 2003, vol. 387, nos. 1–2, pp. 148–152. Scholar
  16. 16.
    Rosenband, V. and Gany, A., Thermal explosion synthesis of magnesium diboride powder, Combust. Explos. Shock Waves, 2014, vol. 50, no. 6, pp. 653–657. doi 10.1134/S0010508214060057CrossRefGoogle Scholar
  17. 17.
    Kovalev, D.Yu., Potanin, A.Yu., Levashov, E.A., and Shkodich, N.F., Phase formation dynamics upon thermal explosion synthesis of magnesium diboride, Ceram. Int., 2016, vol. 42, no. 2, pp. 2951–2959. Scholar
  18. 18.
    Ma, Z., Liu, Yo., Shi, Q., Zhao, Q., and Gao, Z., The mechanism of accelerated phase formation of MgB2 by Cu-doping during low-temperature sintering, Mater. Res. Bull., 2009, vol. 44, no. 3, pp. 531–537. Scholar
  19. 19.
    Feng, W.J., Xia, T.D., Liu, T.Z., Zhao, W.J., and Wei, Z.Q., Synthesis and properties of Mg1–xCuxB2 bulk obtained by self-propagating high-temperature synthesis (SHS) method at low temperature, Physica C, 2005, vol. 425, nos. 3–4, pp. 144–148. Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • A. Yu. Potanin
    • 1
    Email author
  • D. Yu. Kovalev
    • 2
  • Yu. S. Pogozhev
    • 1
  • N. Yu. Khomenko
    • 2
  1. 1.National University of Science and Technology MISiSMoscowRussia
  2. 2.Institute of Structural Macrokinetics and Materials ScienceRussian Academy of SciencesChernogolovka, MoscowRussia

Personalised recommendations